def smallDataTest(): breakPrint() generalPrint("testsSpectralCalc", "Running test function: smallDataTest") # read in data reader = DataReaderATS(atsPath) startTime1 = "2016-02-21 03:00:00" stopTime1 = "2016-02-21 03:30:00" timeData = reader.getPhysicalData(startTime1, stopTime1) timeData.printInfo() # now let's try the calibrator cal = Calibrator(calPath) cal.printInfo() sensors = reader.getSensors(timeData.chans) serials = reader.getSerials(timeData.chans) choppers = reader.getChoppers(timeData.chans) timeData = cal.calibrate(timeData, sensors, serials, choppers) timeData.printInfo() specCal = SpectrumCalculator(timeData.sampleFreq, timeData.numSamples) specData = specCal.calcFourierCoeff(timeData) specData.printInfo() fig = plt.figure(figsize=(10, 10)) specData.view(fig=fig, label="Raw spectral data") # now let's try and process something sproc = SignalProcessor() timeData2 = reader.getPhysicalData(startTime1, stopTime1) timeData2 = cal.calibrate(timeData2, sensors, serials, choppers) timeData2 = sproc.notchFilter(timeData2, 50.0) timeData2 = sproc.notchFilter(timeData2, 16.6667) specData2 = specCal.calcFourierCoeff(timeData2) specData2.printInfo() specData2.view(fig=fig, label="Notch filtered") # set plot properties fig.tight_layout(rect=[0, 0.02, 1, 0.96]) addLegends(fig) plt.show()
def testResample(): breakPrint() generalPrint("testsSignalProcess", "Running test function: testResample") # read in data spamReader = DataReaderSPAM(spamPath) # now get some data startTime = "2016-02-07 02:00:00" stopTime = "2016-02-07 03:00:00" # let's get some unscaled data timeData = spamReader.getUnscaledData(startTime, stopTime) timeData.printInfo() timeDataSave = copy.deepcopy(timeData) timeData.printInfo() # now do some signal processing sproc = SignalProcessor() timeData = sproc.resample(timeData, 50) timeData.printInfo() # now let's plot and see what happens fig = plt.figure(figsize=(20, 10)) x = timeData.getDateArray() xlim = [timeDataSave.startTime, x[4000]] timeDataSave.view(sampleStop=20000, fig=fig, xlim=xlim, label="Raw data") timeData.view(sampleStop=4000, fig=fig, xlim=xlim, label="Resampled data") fig.tight_layout(rect=[0, 0.02, 1, 0.96]) addLegends(fig) plt.show()
def hpFilterTest(): breakPrint() generalPrint("testsSignalProcess", "Running test function: hpFilterTest") # read in data atsReader = DataReaderATS(atsPath) # now get some data startTime = "2016-02-21 03:00:00" stopTime = "2016-02-21 04:00:00" timeData = atsReader.getPhysicalData(startTime, stopTime) timeDataSave = copy.deepcopy(timeData) timeData.printInfo() # now do some signal processing sproc = SignalProcessor() timeData = sproc.highPass(timeData, 24) timeData.printInfo() # now let's plot and see what happens fig = plt.figure(figsize=(20, 10)) timeDataSave.view(fig=fig, label="Raw data") timeData.view(fig=fig, label="High pass filtered") fig.tight_layout(rect=[0, 0.02, 1, 0.96]) addLegends(fig) plt.show()
def testWindowDecimateNotch(): breakPrint() generalPrint("testsWindowDecimate", "Running test function: testWindowDecimateNotch") reader = DataReaderATS(atsPath) timeData = reader.getPhysicalSamples() timeData.printInfo() # now let's try the calibrator cal = Calibrator(calPath) cal.printInfo() sensors = reader.getSensors(timeData.chans) serials = reader.getSerials(timeData.chans) choppers = reader.getChoppers(timeData.chans) timeData = cal.calibrate(timeData, sensors, serials, choppers) timeData.printInfo() # let's apply some filtering and notching sproc = SignalProcessor() timeData = sproc.notchFilter(timeData, 50.0) timeData = sproc.notchFilter(timeData, 16.6667) timeData = sproc.lowPass(timeData, 50) # calculate decimation parameters decParams = DecimationParams(timeData.sampleFreq) decParams.setDecimationParams(7, 6) decParams.printInfo() numLevels = decParams.numLevels timeData.addComment( "Decimating with {} levels and {} frequencies per level".format( numLevels, decParams.freqPerLevel)) # now do window parameters winParams = WindowParams(decParams) winParams.printInfo() # create the decimator dec = Decimator(timeData, decParams) dec.printInfo() for iDec in range(0, numLevels): # get the data for the current level check = dec.incrementLevel() if not check: break # not enough data timeData = dec.timeData # create the windower and give it window parameters for current level fsDec = dec.sampleFreq win = Windower(datetimeRef, timeData, winParams.getWindowSize(iDec), winParams.getOverlap(iDec)) numWindows = win.numWindows if numWindows < 2: break # do no more decimation # add some comments timeData.addComment( "Evaluation frequencies for level {} are {}".format( iDec, listToString(decParams.getEvalFrequenciesForLevel(iDec)))) timeData.addComment( "Windowing with window size {} samples, overlap {} samples and {} windows" .format( winParams.getWindowSize(iDec), winParams.getOverlap(iDec), numWindows)) # create the spectrum calculator and statistics calculators specCalc = SpectrumCalculator(fsDec, winParams.getWindowSize(iDec)) # get ready a file to save the spectra specWrite = SpectrumWriter(specPathNotch, datetimeRef) specWrite.openBinaryForWriting("spectra", iDec, fsDec, winParams.getWindowSize(iDec), winParams.getOverlap(iDec), win.winOffset, numWindows, timeData.chans) # loop though windows, calculate spectra and save for iW in range(0, numWindows): # get the window data winData = win.getData(iW) # calculate spectra specData = specCalc.calcFourierCoeff(winData) # write out spectra specWrite.writeBinary(specData, iW) # close spectra file specWrite.writeCommentsFile(timeData.comments) specWrite.closeFile()
def testFillGap(): breakPrint() generalPrint("testsSignalProcess", "Running test function: testFillGap") # read in data atsReader = DataReaderATS(atsPath) # now get some data startTime1 = "2016-02-21 03:00:00" stopTime1 = "2016-02-21 03:08:00" timeData1 = atsReader.getPhysicalData(startTime1, stopTime1) # more data startTime2 = "2016-02-21 03:10:00" stopTime2 = "2016-02-21 03:15:00" timeData2 = atsReader.getPhysicalData(startTime2, stopTime2) # now do some signal processing sproc = SignalProcessor() timeData = sproc.fillGap(timeData1, timeData2) timeData.printInfo() # now let's plot and see what happens fig = plt.figure(figsize=(20, 10)) x = timeData.getDateArray() xlim = [timeData1.startTime, timeData2.stopTime] timeData.view(sampleStop=timeData.numSamples - 1, fig=fig, xlim=xlim, label="Gap filled") timeData1.view(sampleStop=timeData1.numSamples - 1, fig=fig, xlim=xlim, label="Section1") timeData2.view(sampleStop=timeData2.numSamples - 1, fig=fig, xlim=xlim, label="Section2") fig.tight_layout(rect=[0, 0.02, 1, 0.96]) addLegends(fig) plt.show() # now test with spam data spamReader = DataReaderSPAM(spamPath) # now get some data startTime1 = "2016-02-07 02:00:00" stopTime1 = "2016-02-07 02:08:00" timeData1 = spamReader.getPhysicalData(startTime1, stopTime1) # more data startTime2 = "2016-02-07 02:10:00" stopTime2 = "2016-02-07 02:15:00" timeData2 = spamReader.getPhysicalData(startTime2, stopTime2) # now do some signal processing sproc = SignalProcessor() timeData = sproc.fillGap(timeData1, timeData2) timeData.printInfo() # now let's plot and see what happens fig = plt.figure(figsize=(20, 10)) x = timeData.getDateArray() xlim = [timeData1.startTime, timeData2.stopTime] timeData.view(sampleStop=timeData.numSamples - 1, fig=fig, xlim=xlim, label="Gap filled") timeData1.view(sampleStop=timeData1.numSamples - 1, fig=fig, xlim=xlim, label="Section1") timeData2.view(sampleStop=timeData2.numSamples - 1, fig=fig, xlim=xlim, label="Section2") fig.tight_layout(rect=[0, 0.02, 1, 0.96]) addLegends(fig) plt.show()