def test_freeimage(): img = np.arange(256).reshape((16,16)).astype(np.uint8) freeimage.imsave(_testimgname, img) img_ = freeimage.imread(_testimgname) assert img.shape == img_.shape assert np.all(img == img_)
def test_as_grey(tmpdir): fname = tmpdir.join('mahotas_test.png') colour = np.arange(16 * 16 * 3).reshape((16, 16, 3)) freeimage.imsave(fname, colour.astype(np.uint8)) c2 = freeimage.imread(fname, as_grey=True) assert len(c2.shape) == 2 assert c2.shape == colour.shape[:-1]
def test_freeimage(): img = np.arange(256).reshape((16, 16)).astype(np.uint8) freeimage.imsave(_testimgname, img) img_ = freeimage.imread(_testimgname) assert img.shape == img_.shape assert np.all(img == img_)
def test_save_load_rgba(tmpdir): fname = tmpdir.join('mahotas_test.png') img = np.arange(256).reshape((8, 8, 4)).astype(np.uint8) freeimage.imsave(fname, img) img_ = freeimage.imread(fname) assert img.shape == img_.shape assert np.all(img == img_)
def test_rgba(): rgba = path.join( path.dirname(__file__), 'data', 'rgba.png') rgba = imread(rgba) assert np.all(np.diff(rgba[:,:,3].mean(1)) < 0 ) # the image contains an alpha gradient
def test_uint16(): img = np.zeros((32, 32), dtype=np.uint16) freeimage.imsave(_testimgname, img) img_ = freeimage.imread(_testimgname) assert img.shape == img_.shape assert img.dtype == img_.dtype assert np.all(img == img_)
def test_freeimage(tmpdir): img = np.arange(256).reshape((16, 16)).astype(np.uint8) fname = tmpdir.join('mahotas_test.png') freeimage.imsave(fname, img) img_ = freeimage.imread(fname) assert img.shape == img_.shape assert np.all(img == img_)
def test_uint16(): img = np.zeros((32,32), dtype=np.uint16) freeimage.imsave(_testimgname, img) img_ = freeimage.imread(_testimgname) assert img.shape == img_.shape assert img.dtype == img_.dtype assert np.all(img == img_)
def test_1bpp(): bpp = path.join( path.dirname(__file__), 'data', '1bpp.bmp') bpp = imread(bpp) assert bpp.sum() assert bpp.sum() < bpp.size
def test_uint16(): img = np.zeros((32, 32), dtype=np.uint16) fname = tmpdir.join('mahotas_test.png') freeimage.imsave(fname, img) img_ = freeimage.imread(fname) assert img.shape == img_.shape assert img.dtype == img_.dtype assert np.all(img == img_)
def test_save_load_rgba(): img = np.arange(256).reshape((8,8,4)).astype(np.uint8) freeimage.imsave(_testimgname, img) img_ = freeimage.imread(_testimgname) assert img.shape == img_.shape assert np.all(img == img_)
def test_1bpp(): bpp = path.join(path.dirname(__file__), 'data', '1bpp.bmp') bpp = imread(bpp) assert bpp.sum() assert bpp.sum() < bpp.size
def test_save_load_rgba(): img = np.arange(256).reshape((8, 8, 4)).astype(np.uint8) freeimage.imsave(_testimgname, img) img_ = freeimage.imread(_testimgname) assert img.shape == img_.shape assert np.all(img == img_)
def test_rgba(): rgba = path.join(path.dirname(__file__), 'data', 'rgba.png') rgba = imread(rgba) assert np.all(np.diff(rgba[:, :, 3].mean(1)) < 0) # the image contains an alpha gradient
def test_as_grey(): colour = np.arange(16 * 16 * 3).reshape((16, 16, 3)) imsave(_testimgname, colour.astype(np.uint8)) c2 = imread(_testimgname, as_grey=True) assert len(c2.shape) == 2 assert c2.shape == colour.shape[:-1]
def test_1bpp(): bpp = path.join(path.dirname(__file__), "data", "1bpp.bmp") bpp = freeimage.imread(bpp) assert bpp.sum() assert bpp.sum() < bpp.size
def test_as_grey(): colour = np.arange(16*16*3).reshape((16,16,3)) imsave(_testimgname, colour.astype(np.uint8)) c2 = imread(_testimgname, as_grey=True) assert len(c2.shape) == 2 assert c2.shape == colour.shape[:-1]