def test_dog(): im = mh.demos.load('lena') im = im.mean(2) edges = mh.dog(im) assert edges.shape == im.shape assert edges.any() edges1 = mh.dog(im, sigma1=1.) assert np.any(edges != edges1)
def extractFeatures(self,img,feature_indices=None): if self.compute_dog: img = mh.dog(img) features= mh.features.haralick(img).mean(0) if feature_indices == None: feature_indices = self.selected_features retval = [features[i] for i in feature_indices] return retval
def extractFeaturesWithHaralick(self,img): kpts = self.keypoints(img) features = np.asarray(self.haralickFromKeypoint(img,kpts[0])).reshape(-1,5) if self.compute_dog: img = mh.dog(img) for kpt_index in range(1,len(kpts)): new_features = np.asarray(self.haralickFromKeypoint(img,kpts[kpt_index])).reshape(-1,5) features = np.append(features,new_features,axis=0) return features
f = mh.imread('/home/zo/PycharmProjects/cal-app/person/zj/learn/python-ml/vision4op/image/IMG_1962.JPG') #treegroup_1.JPG') #'/home/zo/Downloads/mahotas-master/mahotas/demos/data/nuclear.png') #mh.demos.nuclear_image() f = f[:213,380:650,1] f[50,:] = 0 # ashe f[:213,10:271,0] #line:f[326:415,172:250,2] print f.shape, f.mean() ,f.std() pylab.imshow(f) pylab.show() #pylab.hist(f) #pylab.show() edges = mh.dog(f) # , just_filter=True) #sobel pylab.imshow(edges) pylab.show() print edges.shape, edges.mean() ,edges.std() #edges = mh.gaussian_filter(edges,1) thred = edges.mean() edges = (edges > thred ) pylab.imshow(edges) pylab.show()
import mahotas import numpy as np from pylab import imshow, gray, show, subplot from os import path lena_image = path.join(path.dirname(path.abspath(__file__)), 'data', 'lena.jpg') photo = mahotas.imread(lena_image, as_grey=True) photo = photo.astype(np.uint8) gray() subplot(131) imshow(photo) edge_sobel = mahotas.sobel(photo) subplot(132) imshow(edge_sobel) edge_dog = mahotas.dog(photo) subplot(133) imshow(edge_dog) show()
import mahotas import numpy as np from pylab import imshow, gray, show, subplot from os import path lena_image = path.join( path.dirname(path.abspath(__file__)), 'data', 'lena.jpg') photo = mahotas.imread(lena_image, as_grey=True) photo = photo.astype(np.uint8) gray() subplot(131) imshow(photo) edge_sobel = mahotas.sobel(photo) subplot(132) imshow(edge_sobel) edge_dog = mahotas.dog(photo) subplot(133) imshow(edge_dog) show()