def getElementsByAsin(asinKeys): result = es.search( index="laptops", body={"query": {"terms": {"asin.keyword": asinKeys}}, "size": 7000}, ) return Backend_Helper.refineResult(result)
def search_for_all_docs(): allDocs = es.search(index="amazon", body={ "size": 10000, "query": { "match_all": {} } }) return allDocs
def search_for_some_docs(): some_docs = es.search(index="amazon", body={ "query": { "match": { "avgRating": 5 } }, "size": 10 }) return some_docs
def get_vague_and_binary_lists(clean_data1): # create binary clean data if weighting is equal to 5 binary_clean_data = {} clean_data = {} # bool_search_default = False #If no weighting = 5 for any value, do not caculate boolean search below for field in clean_data1.keys(): if clean_data1[field]['weight'] == 5: # bool_search_default = True binary_clean_data[field] = clean_data1[field] # weigth doesn't matter for boolean search else: clean_data[field] = clean_data1[field] # binary_clean data has to also contain the empty/meaningless fields because this is the format needed for BinarySearch() method # This doesn't matter though because weight has no meaning for boolean search and is not used in the calculation for the result set binary_clean_data[field] = {'weight': 1} # print("print binary_clean_data: ", binary_clean_data) # print("print clean_data: ", clean_data) # Compute boolean/binary search for items with weighting = 5 bin_obj = binary_search.BinarySearch() query = bin_obj.createBinarySearchQuery(binary_clean_data) res = es.search(index="amazon", body=query) output_binary = Backend_Helper.refineResult(res) return clean_data, output_binary
def do_query(data): with open(allDocs_path, 'rb') as input: allDocs = pickle.load(input) data = Backend_Helper.clean_frontend_json(data) #create binary clean data if weighting is equal to 5 binary_clean_data = {} clean_data = {} alexa_clean_data = {} output_binary = list() #bool_search_default = False #If no weighting = 5 for any value, do not caculate boolean search below for field in data.keys(): if data[field]['weight'] == 5: #bool_search_default = True binary_clean_data[field] = data[field] #weigth doesn't matter for boolean search elif data[field]["weight"] == 6: #This is for alexa_search, will be used at the end alexa_clean_data[field] = data[field] pass else: clean_data[field] = data[field] #Compute boolean/binary search for items with weighting = 5 bin_obj = binary_search.BinarySearch() alexa_searcher = alexa_functions.AlexaSearch(es) if len(binary_clean_data) > 0: query = bin_obj.createBinarySearchQuery(binary_clean_data) res = es.search(index="amazon", body=query) output_binary = Backend_Helper.refineResult(res) if len(alexa_clean_data) > 0 : #Add alexa search results to output_binary, same mechanism and logic for both. alexa_result = get_alexa_search_result(allDocs, alexa_clean_data, alexa_searcher) output_binary += alexa_result res_search = list() # if(len(output_binary)) > 0: # allDocs = [item for item in allDocs if item['asin'] in output_binary] # field_value_dict has the form: # {'binary' : { 'brandName': ['acer', 'hp'], 'weight':1}, ...}, 'vague' : {....}, field_value_dict = extract_fields_and_values(clean_data) # print(field_value_dict) #Get total cumulative weight weight_sum (for example for all attributes weights were 7) and dividue each score by this weight_sum #For normalization weight_sum = 0 for field_type in field_value_dict.keys(): for field_name in field_value_dict[field_type]: field_weight = field_value_dict[field_type][field_name]["weight"] if field_weight != 5: ##Shouldn't happen though because they have already been removed from clean_data weight_sum += field_weight # --------------------------------------------------------------------# # Objects for each class to use the vague searching functions range_searcher = vague_search_range.VagueSearchRange(es) binary_searcher = binary_search_text.BinarySearchText(es) harddrive_searcher = vague_search_harddrive.VagueHardDrive(es) value_searcher = vague_search_value.VagueSearchValue(es) ######################################################################## NEW ######################################### #Function call in ColorInformation to extract searched values. #function extractKeyValuePairs() will do that. c_i_helper = ColorInformation() price_searcher = vague_search_price.VagueSearchPrice(es) ######################################################################## NEW ######################################### # --------------------------------------------------------------------# # # Special case to handle hardDriveSize, length is >1 if it has values other than weight if 'hardDriveSize' in clean_data and len(clean_data["hardDriveSize"]) > 1: # res_search += vague_search_harddrive.computeVagueHardDrive_alternative(allDocs, clean_data, # harddrive_searcher, # res_search) res_search = harddrive_searcher.computeVagueHardDrive_alternative(allDocs, field_value_dict, harddrive_searcher, res_search) # --------------------------------------------------------------------# # Special case to handle price if 'price' in clean_data and len(clean_data["price"]) > 1: ##NEW########## #res_search += vague_search_price.VagueSearchPrice.computeVaguePrice_alternative(allDocs, clean_data, price_searcher, res_search, searchedValues) res_search = price_searcher.computeVaguePrice_alternative(allDocs, field_value_dict, price_searcher, res_search) # --------------------------------------------------------------------# # Gets scores for all other attributes res_search += call_responsible_methods(allDocs, field_value_dict, range_searcher, binary_searcher, value_searcher, alexa_searcher) # --------------------------------------------------------------------# resList = [dict(x) for x in res_search] # Counter objects count the occurrences of objects in the list... count_dict = Counter() for tmp in resList: count_dict += Counter(tmp) result = dict(count_dict) sortedDict = collections.OrderedDict(sorted(result.items(), key=lambda x: x[1], reverse=True)) asinKeys = list(result.keys()) # call the search function outputProducts = getElementsByAsin(asinKeys) #calls helper class method refineResuls # Compare outputProducts and output_binary to select only items that also occur in boolean search outputProducts, output_binary = filter_from_boolean(outputProducts, output_binary) # add a vagueness score to the returned objects and normalize for item in outputProducts: # Normalize the scores so that for each score x, 0< x <=1 item['vaguenessScore'] = result[item['asin']]/weight_sum outputProducts = sorted(outputProducts, key=lambda x: x["vaguenessScore"], reverse=True) for item in output_binary: #binary search results that did not meet other vague requirements item['vaguenessScore'] = None # concatenate with products with weighting 5 *** outputProducts = outputProducts + output_binary # products with same vagueness score should be listed according to price descending #searchedValues = c_i.extractKeyValuePairs() #c_i.prozessDataBinary(searchedValues) # If possible, apply sorting before weigthing, so it does not interfere with the list sorted by weighting s_p = SortByPrice() # #DELETE all products with vagueness_score = 0 outputProducts_vaguenessGreaterZero = list() for laptop in outputProducts: if laptop["vaguenessScore"] != 0: outputProducts_vaguenessGreaterZero.append(laptop) outputProducts_vaguenessGreaterZero = s_p.sort_by_price(outputProducts_vaguenessGreaterZero) #outputProducts_vaguenessGreaterZero , output_binary = filter_from_boolean(outputProducts_vaguenessGreaterZero, output_binary) #outputProducts_vaguenessGreaterZero = outputProducts_vaguenessGreaterZero[:1000] c_i_helper.add_matched_information(data,outputProducts_vaguenessGreaterZero,allDocs) #Needed in frontend outputProducts_vaguenessGreaterZero_with_original_query = [outputProducts_vaguenessGreaterZero,data] return outputProducts_vaguenessGreaterZero_with_original_query
def get_reviews_data(asin_keys): result = es.search( index="products", body={"query": {"terms": {"asin.keyword": asin_keys}}, "size": 7000}, ) return Backend_Helper.refineReviews(result)
def search(): """ Search for a file, required parameter "q" is the term to search for Possible filters: - type = Limit only for this type of files - path = Limit only for files in this directory The search automatically add the following filters: - level = Limit only for files of level lowest or equals to current user's level - group = Limit only for files with least one group of the current user Extra parameters: - page = The number of page """ query_text = request.args.get('q', '').lower() if not query_text: return abort(400) type_item = None type_id = request.args.get('type', None) path = request.args.get('path', '') page_size = 20 page = int(request.args.get('page', 1)) - 1 if type_id: type_item = mongo.db.types.find_one_or_404({'_id': ObjectId(type_id)}) invalid_level = type_item['level'] > g.level if g.level < 3: type_groups = type_item['groups'] user_groups = [group['_id'] for group in g.groups] invalid_group = len(type_groups) > 0 and set( user_groups).isdisjoint(type_groups) else: invalid_group = False if invalid_level or invalid_group: return abort(401) query_type = [type_id] else: query_type = [str(t['_id']) for t in get_types()] inherited_level = 1 query = { 'query': { 'bool': { 'must': [ { 'term': { 'doc_type': 'doc' } }, # Only documents { 'range': { 'level': { 'lt': g.level + 1 } } }, # Only lower or equal than current user level { 'terms': { 'type.keyword': query_type } }, # Only allowed types { 'regexp': { 'path.keyword': '{}.*'.format(path) } }, # Only inside this path { 'bool': { 'should': [ { 'match': { 'entities': '{}^6'.format(query_text) } }, # Match term in entities with 6 of boost { 'match': { 'name_lower': '{}^3'.format(query_text) } }, # Match term in name with 3 of boost { 'match': { 'description_lower': '{}'.format(query_text) } } # Match term in description with no boost ], 'minimum_should_match': '1' } } # Should match at least one of the above ] } }, 'size': page_size, 'from': page_size * page } results = es.search(index=app.config['ELASTICSEARCH_INDEX'], doc_type='documents', body=query) return render_template('search.html', type_item=type_item, path=None, query_text=query_text, inherited_level=inherited_level, results=results)
async def search_book(keyword: str): try: result = es.search(index="library", body={"query": {"match": {"title": f'"{keyword}"'}}}) return result['hits']['hits'] except elasticsearch.exceptions.NotFoundError: return {"error": "No matching book found!"}