def objective(params): config = {'model_name': model_name, 'num_epochs': num_epochs} for (key, value) in params.items(): config[key] = value print("Parameter: {} | Value: {}".format(key, value)) run = experiment.run(config_updates=config) return run.result
def test_train_cartpole_td3_tdg(self): from main import ex config = dict(env_name='GYMMB_CartPole-v1', agent_alg='td3', tdg_error_weight=5, dump_dir=None, print_config=False, seed=123, n_total_steps=200, n_warm_up_steps=50, model_training_n_batches=10, policy_training_n_iters=5, policy_actors=32, eval_freq=100, n_eval_episodes_per_policy=1, neptune_project=None) ret, abs_action = ex.run('train', config_updates=config).result self.assertAlmostEqual(ret, 42.) self.assertAlmostEqual(abs_action, 0.39846721291542053)
def test_train_test_ddpg(self): from main import ex config = dict(env_name='GYMMB_Test-v0', agent_alg='ddpg', tdg_error_weight=0, dump_dir=None, print_config=False, seed=123, n_total_steps=200, n_warm_up_steps=50, model_training_n_batches=50, policy_training_n_iters=5, policy_actors=32, eval_freq=100, n_eval_episodes_per_policy=1, neptune_project=None) ret, abs_action = ex.run('train', config_updates=config).result self.assertAlmostEqual(ret, -0.02898537367582321) self.assertAlmostEqual(abs_action, 0.06166519597172737)