def test_calc_first_layer_out(self): uut = n_network.NNetwork(1, 0.5, 0.2) when(genotype.Genotype).init_genes().thenReturn(np.ones(54, dtype=str)) out = uut.calc_first_layer_out([0, 0], 1, [0, 0, 0], [0, 0, 0]) expected = np.array([0.5, 0.5]) unstub(genotype.Genotype) assert np.array_equal(expected, out)
def test_calc_out(self): uut = n_network.NNetwork(1, 0.5, 0.2) when(genotype.Genotype).init_genes().thenReturn(np.zeros(54, dtype=str)) genotype_var = genotype.Genotype() input = [0, 0] expected = 0.5 assert uut.calc_out(input, 1, genotype_var) == expected unstub(genotype.Genotype)
def test_selection(self): uut = n_network.NNetwork(2, 1, 0.2) first_contender = uut.genotypes[0] second_contender = uut.genotypes[1] when(first_contender).get_fitness_indicator().thenReturn(0.5) when(second_contender).get_fitness_indicator().thenReturn(0.7) uut.selection() unstub(first_contender) unstub(second_contender) assert np.array_equal(first_contender.genes, uut.genotypes[0].genes) assert np.size(uut.genotypes) == 1
def test_calc_fitness_func(self): uut = n_network.NNetwork(5, 0.5, 0.2) uut.calc_fitness_function()
def test_cross_population_size(self): uut = n_network.NNetwork(4, 0.5, 0.2) uut.genotypes = uut.genotypes[0:2] uut.cross_population() assert uut.genotypes.size == 4