예제 #1
0
파일: api_old.py 프로젝트: sgottsch/Tab2KG
def semantic_labeling(train_dataset, test_dataset, train_dataset2=None, evaluate_train_set=False, reuse_rf_model=True):
    """Doing semantic labeling, train on train_dataset, and test on test_dataset.

    train_dataset2 is optionally provided in case train_dataset, and test_dataset doesn't have overlapping semantic types
    For example, given that train_dataset is soccer domains, and test_dataset is weather domains; the system isn't able
    to recognize semantic types of test_dataset because of no overlapping. We need to provide another train_dataset2, which
    has semantic types of weather domains; so that the system is able to make prediction.

    Train_dataset2 is default to train_dataset. (train_dataset is use to train RandomForest)

    :param train_dataset: str
    :param test_dataset: str
    :param train_dataset2: Optional[str]
    :param evaluate_train_set: bool
    :param reuse_rf_model: bool
    :return:
    """
    logger = get_logger("semantic-labeling-api", format_str='>>>>>> %(asctime)s - %(levelname)s:%(name)s:%(module)s:%(lineno)d:   %(message)s')

    if train_dataset2 is None:
        train_dataset2 = train_dataset
        datasets = [train_dataset, test_dataset]
    else:
        datasets = [train_dataset, test_dataset, train_dataset2]

    semantic_labeler = SemanticLabeler()
    # read data into memory
    logger.info("Read data into memory")
    semantic_labeler.read_data_sources(list(set(datasets)))
    # index datasets that haven't been indexed before

    not_indexed_datasets = list({dataset for dataset in datasets if not is_indexed(dataset)})
    if len(not_indexed_datasets) > 0:
        logger.info("Index not-indexed datasets: %s" % ",".join(not_indexed_datasets))
        semantic_labeler.train_semantic_types(not_indexed_datasets)

    # remove existing file if not reuse previous random forest model
    if not reuse_rf_model and os.path.exists("model/lr.pkl"):
        os.remove("model/lr.pkl")

    # train the model
    logger.info("Train randomforest... with args ([1], [%s]", train_dataset)
    semantic_labeler.train_random_forest([1], [train_dataset])

    # generate semantic typing
    logger.info("Generate semantic typing using: trainset: %s, for testset: %s", train_dataset, test_dataset)
    result = semantic_labeler.test_semantic_types_from_2_sets(train_dataset2, test_dataset)

    if not os.path.exists("output"):
        os.mkdir("output")
    with open("output/%s_result.json" % test_dataset, "w") as f:
        ujson.dump(result, f)

    if evaluate_train_set:
        logger.info("Generate semantic typing for trainset")
        result = semantic_labeler.test_semantic_types_from_2_sets(train_dataset2, train_dataset2)
        with open("output/%s_result.json" % train_dataset2, "w") as f:
            ujson.dump(result, f)

    return result
예제 #2
0
def semantic_labeling(train_dataset, test_dataset, train_dataset2=None, evaluate_train_set=False, reuse_rf_model=True):
    """Doing semantic labeling, train on train_dataset, and test on test_dataset.

    train_dataset2 is optionally provided in case train_dataset, and test_dataset doesn't have overlapping semantic types
    For example, given that train_dataset is soccer domains, and test_dataset is weather domains; the system isn't able
    to recognize semantic types of test_dataset because of no overlapping. We need to provide another train_dataset2, which
    has semantic types of weather domains; so that the system is able to make prediction.

    Train_dataset2 is default to train_dataset. (train_dataset is use to train RandomForest)

    :param train_dataset: str
    :param test_dataset: str
    :param train_dataset2: Optional[str]
    :param evaluate_train_set: bool
    :param reuse_rf_model: bool
    :return:
    """
    logger = get_logger("semantic-labeling-api", format_str='>>>>>> %(asctime)s - %(levelname)s:%(name)s:%(module)s:%(lineno)d:   %(message)s')

    if train_dataset2 is None:
        train_dataset2 = train_dataset
        datasets = [train_dataset, test_dataset]
    else:
        datasets = [train_dataset, test_dataset, train_dataset2]

    semantic_labeler = SemanticLabeler()
    # read data into memory
    logger.info("Read data into memory")
    semantic_labeler.read_data_sources(list(set(datasets)))
    # index datasets that haven't been indexed before

    not_indexed_datasets = list({dataset for dataset in datasets if not is_indexed(dataset)})
    if len(not_indexed_datasets) > 0:
        logger.info("Index not-indexed datasets: %s" % ",".join(not_indexed_datasets))
        semantic_labeler.train_semantic_types(not_indexed_datasets)

    # remove existing file if not reuse previous random forest model
    if not reuse_rf_model and os.path.exists("model/lr.pkl"):
        os.remove("model/lr.pkl")

    # train the model
    logger.info("Train randomforest... with args ([1], [%s]", train_dataset)
    semantic_labeler.train_random_forest([1], [train_dataset])

    # generate semantic typing
    logger.info("Generate semantic typing using: trainset: %s, for testset: %s", train_dataset, test_dataset)
    result = semantic_labeler.test_semantic_types_from_2_sets(train_dataset2, test_dataset)

    if not os.path.exists("output"):
        os.mkdir("output")
    with open("output/%s_result.json" % test_dataset, "w") as f:
        ujson.dump(result, f)

    if evaluate_train_set:
        logger.info("Generate semantic typing for trainset")
        result = semantic_labeler.test_semantic_types_from_2_sets(train_dataset2, train_dataset2)
        with open("output/%s_result.json" % train_dataset2, "w") as f:
            ujson.dump(result, f)

    return result
예제 #3
0
파일: api_old.py 프로젝트: sgottsch/Tab2KG
    with open("output/%s_result.json" % test_dataset, "w") as f:
        ujson.dump(result, f)

    if evaluate_train_set:
        logger.info("Generate semantic typing for trainset")
        result = semantic_labeler.test_semantic_types_from_2_sets(train_dataset2, train_dataset2)
        with open("output/%s_result.json" % train_dataset2, "w") as f:
            ujson.dump(result, f)

    return result


if __name__ == '__main__':
    import argparse

    parser = argparse.ArgumentParser('Semantic labeling API')
    parser.add_argument('--train_dataset', type=str, help='trainset', required=True)
    parser.add_argument('--test_dataset', type=str, help='testset', required=True)
    parser.add_argument('--train_dataset2', type=str, default=None, help='default to train_dataset')
    parser.add_argument('--evaluate_train_set', type=lambda x: x.lower() == "true", default=False, help='default False')
    parser.add_argument('--reuse_rf_model', type=lambda x: x.lower() == "true", default=True, help='default True')

    args = parser.parse_args()

    if args.train_dataset2 is None:
        args.train_dataset2 = args.train_dataset

    logger = get_logger("api-starter", format_str='>>>>>> %(asctime)s - %(levelname)s:%(name)s:%(module)s:%(lineno)d:   %(message)s')
    logger.info("Calling semantic labeling API with args: %s" % args)
    semantic_labeling(args.train_dataset, args.test_dataset, args.train_dataset2, args.evaluate_train_set, args.reuse_rf_model)
예제 #4
0
class SemanticLabeler:

    logger = get_logger("SemanticLabeler", level=logging.DEBUG)

    def __init__(self):
        self.dataset_map = {}
        self.file_class_map = {}
        self.random_forest = None

    def preprocess_memex_data_sources(self, folder_path):
        source_map = OrderedDict()
        for file_name in os.listdir(folder_path):
            file_path = os.path.join(folder_path, file_name)
            print(file_path)
            with open(file_path, "r") as f:
                for json_line in f.readlines():
                    json_obj = json.loads(json_line)
                    source_name = json_obj["tld"]

                    if source_name not in source_map:
                        source_map[source_name] = Source(source_name)

                    source = source_map[source_name]

                    for attr in json_obj:
                        if attr.startswith("inferlink"):
                            attr_name = attr.split("_")[1]
                            if attr_name not in source.column_map:
                                source.column_map[attr_name] = Column(
                                    attr_name, source.name)
                                source.column_map[
                                    attr_name].semantic_type = attr_name
                            for ele1 in json_obj[attr]:
                                if isinstance(ele1["result"], dict):
                                    source.column_map[attr_name].add_value(
                                        ele1["result"]["value"])
                                else:
                                    for ele2 in ele1["result"]:
                                        source.column_map[attr_name].add_value(
                                            ele2["value"])

        for source in source_map.values():
            if source.column_map:
                source.write_csv_file("data/datasets/memex/%s" % source.name)

    def read_data_sources(self, folder_paths):
        semantic_type_set = set()
        attr_count = 0
        for folder_name in folder_paths:
            self.logger.debug("Read dataset: %s", folder_name)

            folder_path = "data/datasets/%s" % folder_name
            source_map = OrderedDict()
            data_folder_path = os.path.join(folder_path, "tables")
            model_folder_path = os.path.join(folder_path, "models")

            for filename in sorted(os.listdir(data_folder_path)):
                extension = os.path.splitext(filename)[1]

                if ".DS" in filename:
                    continue

                self.logger.debug("    -> read: %s", filename)

                source = Source(os.path.splitext(filename)[0])
                file_path = os.path.join(data_folder_path, filename)

                if "full" in data_folder_path:
                    source.read_data_from_wc_csv(file_path)
                elif extension == ".csv":
                    source.read_data_from_csv(file_path)
                elif extension == ".json":
                    source.read_data_from_json(file_path)
                elif extension == ".xml":
                    source.read_data_from_xml(file_path)
                else:
                    source.read_data_from_text_file(file_path)
                source_map[filename] = source

                if ('rowNumber' in source.column_map):
                    del source.column_map['rowNumber']

                # NOTE: BINH delete empty columns here!!!, blindly follows the code in indexer:36
                for key in list(source.column_map.keys()):
                    column = source.column_map[key]
                    if column.semantic_type:
                        if len(column.value_list) == 0:
                            del source.column_map[key]
                            source.empty_val_columns[key] = column
                            logging.warning(
                                "Indexer: IGNORE COLUMN `%s` in source `%s` because of empty values",
                                column.name, source.name)

                for column in source.column_map.values():
                    semantic_type_set.add(column.semantic_type)
                attr_count += len(source.column_map.values())
            if os.path.exists(model_folder_path):
                for filename in os.listdir(model_folder_path):
                    if ".DS" in filename:
                        continue

                    try:
                        source = source_map[os.path.splitext(
                            os.path.splitext(filename)[0])[0]]
                    except:
                        source = source_map[filename]

                    extension = os.path.splitext(filename)[1]
                    if extension == ".json":
                        source.read_semantic_type_json(
                            os.path.join(model_folder_path, filename))
                    else:
                        print(source)
                        source.read_semantic_type_from_gold(
                            os.path.join(model_folder_path, filename))

            self.dataset_map[folder_name] = source_map
            # print semantic_type_set
            print(len(semantic_type_set))
            print(attr_count)

    def train_random_forest(self, train_sizes, data_sets):
        self.random_forest = MyRandomForest(data_sets, self.dataset_map,
                                            "model/lr_all.pkl")
        self.random_forest.train(train_sizes)

    def train_semantic_types(self, dataset_list):
        print("train_semantic_types")
        for name in dataset_list:
            self.logger.debug("Indexing dataset %s", name)

            index_config = {'name': re.sub(not_allowed_chars, "!", name)}
            indexer.init_analyzers(index_config)
            source_map = self.dataset_map[name]
            for idx, key in enumerate(source_map.keys()):
                source = source_map[key]
                print("Index ", key)
                successful = source.save(
                    index_config={
                        'name': re.sub(not_allowed_chars, "!", name)
                    })
                if (not successful):
                    self.logger.info("Error while parsing file ", key)
                    print("Error while parsing file.")
                self.logger.debug("    + finish index source: %s", key)

    def predict_semantic_type_for_column(self, column):
        train_examples_map = searcher.search_types_data("index_name", [])
        textual_train_map = searcher.search_similar_text_data(
            "index_name", column.value_text, [])
        return column.predict_type(train_examples_map, textual_train_map,
                                   self.random_forest)

    def test_semantic_types(self, data_set, test_sizes):
        print("test_semantic_types")
        rank_score_map = defaultdict(lambda: defaultdict(lambda: 0))
        count_map = defaultdict(lambda: defaultdict(lambda: 0))

        index_config = {'name': data_set}
        source_map = self.dataset_map[data_set]
        double_name_list = source_map.values() * 2
        file_write.write("Dataset: " + data_set + "\n")
        for size in test_sizes:
            start_time = time.time()

            for idx, source_name in enumerate(source_map.keys()):
                train_names = [
                    source.index_name
                    for source in double_name_list[idx + 1:idx + size + 1]
                ]
                train_examples_map = searcher.search_types_data(
                    index_config, train_names)
                source = source_map[source_name]

                for column in source.column_map.values():
                    if column.semantic_type:
                        textual_train_map = searcher.search_similar_text_data(
                            index_config, column.value_text, train_names)
                        semantic_types = column.predict_type(
                            train_examples_map, textual_train_map,
                            self.random_forest)

                        for threshold in [0.0]:
                            found = False
                            rank = 1
                            rank_score = 0
                            for prediction in semantic_types[:1]:
                                if column.semantic_type in prediction[1]:
                                    if prediction[0] > threshold and prediction[
                                            0] != 0:
                                        rank_score = 1.0 / (rank)
                                    found = True
                                    break
                                if prediction[0] != 0:
                                    rank += len(prediction[1])

                            if not found and semantic_types[0][0] < threshold:
                                rank_score = 1
                            # file_write.write(
                            #     column.name + "\t" + column.semantic_type + "\t" + str(semantic_types) + "\n")
                            file_write.write(str(rank_score) + "\n")
                            rank_score_map[size][threshold] += rank_score
                            count_map[size][threshold] += 1
            running_time = time.time() - start_time
            for threshold in [0.0]:
                file_write.write("Size: " + str(size) + " F-measure: " +
                                 str(rank_score_map[size][threshold] * 1.0 /
                                     count_map[size][threshold]) + " Time: " +
                                 str(running_time) + " Count: " +
                                 str(count_map[size][threshold]) + "\n")

    def read_class_type_from_csv(self, file_path):
        self.file_class_map = {}
        with open(file_path, "r") as f:
            csv_reader = csv.reader(f)
            for row in csv_reader:
                self.file_class_map[row[0].replace(".tar.gz", ".csv")] = row[1]

    def test_semantic_types_from_2_sets(self, train_set, test_set):

        # self.read_class_type_from_csv("data/datasets/%s/classes.csv" % test_set)
        # print self.file_class_map.keys()
        rank_score_map = defaultdict(lambda: 0)
        count_map = defaultdict(lambda: 0)

        source_result_map = {}
        train_index_config = {'name': train_set}
        train_names = [
            source.index_name
            for source in self.dataset_map[train_set].values()
        ]
        self.logger.info("Train source: %s", train_names)

        valid = True
        for idx, source_name in enumerate(self.dataset_map[test_set]):
            # if source_name not in self.file_class_map:
            #     continue
            train_examples_map = searcher.search_types_data(
                train_index_config, train_names)

            source = self.dataset_map[test_set][source_name]
            self.logger.info("Test source: %s", source_name)

            column_result_map = {}
            for column in source.column_map.values():
                # if not column.semantic_type or not column.value_list or "ontology" not in column.semantic_type:
                #     continue
                if not column.semantic_type or not column.value_list:
                    continue

                textual_train_map = searcher.search_similar_text_data(
                    train_index_config, column.value_text, train_names)
                # self.logger.info(textual_train_map)

                try:
                    semantic_types = column.predict_type(
                        train_examples_map, textual_train_map,
                        self.random_forest)
                except KeyError:
                    print("KEY ERROR")
                    valid = False
                    break

                # if(not semantic_types):
                #    self.logger.info("Could not do "+column.name)
                #    continue

                column_result_map[column.name] = semantic_types
                self.logger.info("    -> column: %s", column.name)

                file_write.write(column.name + "\t" + column.semantic_type +
                                 "\t" + str(semantic_types) + "\n")

                for threshold in [0.0, 0.1, 0.15, 0.2, 0.25, 0.5]:
                    found = False
                    rank = 1
                    rank_score = 0
                    for prediction in semantic_types[:1]:
                        if column.semantic_type in prediction[1]:
                            if prediction[0] > threshold and prediction[0] != 0:
                                rank_score = 1.0 / rank
                            found = True
                            break
                        if prediction[0] != 0:
                            rank += len(prediction[1])

                    if not found and semantic_types[0][0] < threshold:
                        rank_score = 1
                    file_write.write(str(rank_score) + "\n")
                    rank_score_map[threshold] += rank_score
                    count_map[threshold] += 1

            source_result_map[source_name] = column_result_map

#         for threshold in [0.0, 0.1, 0.15, 0.2, 0.25, 0.5]:
#             file_write.write(
#                 " MRR: " + str(
#                     rank_score_map[threshold] * 1.0 / count_map[threshold]) + " Count: " + str(
#                     count_map[threshold]) + " threshold=" + str(threshold) + "\n")
        return source_result_map

    def write_data_for_transform(self, name):
        for source_name, source in self.dataset_map[name].items():
            for attribute in source.column_map.values():
                attribute.write_to_data_file()
예제 #5
0
class MyRandomForest:

    logger = get_logger("rf", level=logging.DEBUG)

    def __init__(self, data_sets=None, dataset_map=None, model_path=None):
        self.data_sets = data_sets
        self.dataset_map = dataset_map
        self.model_path = model_path
        self.model = None
        self.feature_selector = None

    def generate_train_data(self, train_sizes):
        self.logger.info("generate_train_data")
        train_data = []
        for data_set in self.data_sets:
            print("data_set: ", data_set)
            train_data = []
            index_config = {'name': data_set}
            source_map = self.dataset_map[data_set]
            double_name_list = source_map.values() * 2
            for size in train_sizes:
                for idx, source_name in enumerate(source_map.keys()):
                    train_names = [
                        source.index_name
                        for source in double_name_list[idx + 1:idx + size + 1]
                    ]
                    train_examples_map = searcher.search_types_data(
                        index_config, train_names)
                    source = source_map[source_name]
                    print("Source: ", source)
                    for column in source.column_map.values():
                        print("COLUMN: ", column)
                        if column.semantic_type:
                            textual_train_map = searcher.search_similar_text_data(
                                index_config, column.value_text, train_names)
                            feature_vectors = column.generate_candidate_types(
                                train_examples_map,
                                textual_train_map,
                                is_labeled=True)
                            train_data += feature_vectors
        return train_data

    def train(self, train_sizes):
        if os.path.exists(self.model_path):
            print "Loading ..."
            self.model = joblib.load("model/lr_all.pkl")
        else:
            train_df = self.generate_train_data(train_sizes)
            train_df = pd.DataFrame(train_df)
            train_df = train_df.replace([np.inf, -np.inf, np.nan], 0)
            # self.model = LogisticRegression(n_estimators=200, combination="majority_voting")
            self.model = LogisticRegression(class_weight="balanced")
            # print train_df
            # sample_weight = train_df['label'].apply(lambda x: 15 if x else 1)
            # print sample_weight
            if is_tree_based:
                self.model.fit(train_df[tree_feature_list], train_df['label'])
            else:
                # self.model.fit(train_df[feature_list], train_df['label'])

                self.model.fit(train_df[feature_list], train_df['label'])

                # train_df[feature_list + ["label"]].to_csv("train.csv", mode='w', header=True)
                # cost = len(train_df[train_df['label'] == False]) / len(train_df[train_df['label'] == True])
                # self.model.fit(train_df[feature_list].as_matrix(), train_df['label'].as_matrix(),
                #                np.tile(np.array([1, cost, 0, 0]), (train_df.shape[0], 1)))
            joblib.dump(self.model, self.model_path)

    def predict(self, test_data, true_type):

        test_df = pd.DataFrame(test_data)
        test_df = test_df.replace([np.inf, -np.inf, np.nan], 0)

        if (test_df.empty == True):
            self.logger.info("Error")
            #return

        if is_tree_based:
            test_df['prob'] = [
                x[1] for x in self.model.predict_proba(
                    test_df[tree_feature_list].as_matrix())
            ]
        else:
            test_df['prob'] = [
                x[1] for x in self.model.predict_proba(
                    test_df[feature_list].as_matrix())
            ]
        # test_df['prediction'] = [1 if x else 0 for x in self.model.predict(test_df[feature_list])]
        test_df['truth'] = test_df['name'].map(
            lambda row: row.split("!")[0] == true_type)
        test_df = test_df.sort_values(["prob"], ascending=[False])

        if os.path.exists("debug.csv"):
            test_df.to_csv("debug.csv", mode='a', header=False)
        else:
            test_df.to_csv("debug.csv", mode='w', header=True)

        return test_df[["prob", 'name']].T.to_dict().values()
예제 #6
0
    with open("output/%s_result.json" % test_dataset, "w") as f:
        ujson.dump(result, f)

    if evaluate_train_set:
        logger.info("Generate semantic typing for trainset")
        result = semantic_labeler.test_semantic_types_from_2_sets(train_dataset2, train_dataset2)
        with open("output/%s_result.json" % train_dataset2, "w") as f:
            ujson.dump(result, f)

    return result


if __name__ == '__main__':
    import argparse

    parser = argparse.ArgumentParser('Semantic labeling API')
    parser.add_argument('--train_dataset', type=str, help='trainset', required=True)
    parser.add_argument('--test_dataset', type=str, help='testset', required=True)
    parser.add_argument('--train_dataset2', type=str, default=None, help='default to train_dataset')
    parser.add_argument('--evaluate_train_set', type=lambda x: x.lower() == "true", default=False, help='default False')
    parser.add_argument('--reuse_rf_model', type=lambda x: x.lower() == "true", default=True, help='default True')

    args = parser.parse_args()

    if args.train_dataset2 is None:
        args.train_dataset2 = args.train_dataset

    logger = get_logger("api-starter", format_str='>>>>>> %(asctime)s - %(levelname)s:%(name)s:%(module)s:%(lineno)d:   %(message)s')
    logger.info("Calling semantic labeling API with args: %s" % args)
    semantic_labeling(args.train_dataset, args.test_dataset, args.train_dataset2, args.evaluate_train_set, args.reuse_rf_model)