def get_confs1(): score = 5 return [ MyConfStableLTa(classifier=cnn(nb_epoch=5), score=score), MyConfStableLTa(classifier=cnn(),score=score), MyConfStableLTa(classifier=cnn(num_filt_2=4), score=score), MyConfStableLTa(classifier=cnn(num_filt_1=6, num_filt_2=4), score=score), MyConfStableLTa(classifier=cnn(batch_size=1000), score=score), ]
def get_confs(): score = 5 return [ #MyConfStableLTa(classifier=ccl2(batch_size=32, nb_epoch=20), score=score), #MyConfStableLTa(classifier=cnn(batch_size=32, nb_epoch=20), score=score), MyConfStableLTa(classifier=Logit2(), score=score), ]
import os import pandas as pd local_path = os.path.dirname(__file__) root = os.path.join(local_path, '..', "..") sys.path.append(root) from main.work.conf import MyConfStableLTa def work(confer): if not os.path.exists(confer.get_sel_file()) or confer.force: df = confer.selector.work() print(df.shape) df.to_pickle(confer.get_sel_file()) if __name__ == "__main__": from main.classifier.tree import MySGDClassifier confer = MyConfStableLTa(classifier=MySGDClassifier(),score=5) ta_file = pd.read_pickle(confer.get_bitlize_file()) ta_file1 = confer.selector._select(ta_file, confer.model_split.train_start, confer.model_split.train_end, confer.scores[0].get_name()) ta_file2 = confer.selector._select(ta_file, "2013-01-01", "2014-01-01", confer.scores[0].get_name()) ta = ta_file2.merge(ta_file1, left_index=True, right_index=True) print(ta.head())
#"adj": MyConfStableLTa(classifier=Logit2(30), is_adj= True), #"score5_30": MyConfStableLTa(classifier=Logit2(dim=30), is_adj = False), #"score5_64": MyConfStableLTa(classifier=Logit2(dim=64), is_adj = False), #"score5_8": MyConfStableLTa(classifier=Logit2(dim=8), is_adj = False), #"score5_16": MyConfStableLTa(classifier=Logit2(dim=16), is_adj = False), #"score5_24": MyConfStableLTa(classifier=Logit2(dim=24), is_adj = False), #"score5_32": MyConfStableLTa(classifier=Logit2(dim=32), is_adj = False), #"score5_40": MyConfStableLTa(classifier=Logit2(dim=40), is_adj = False), #"score5_40_2": MyConfStableLTa(classifier=Logit2(dim=40, dropout=0.2), is_adj = False), #"score5_40_4": MyConfStableLTa(classifier=Logit2(dim=40, dropout=0.4), is_adj = False), #"score5_40_6": MyConfStableLTa(classifier=Logit2(dim=40, dropout=0.6), is_adj = False), #"score5_40_6_1": MyConfStableLTa(classifier=Logit2(hs=1, dim=40, dropout=0.6), is_adj = False), #"score5_40_6_2": MyConfStableLTa(classifier=Logit2(hs=2, dim=40, dropout=0.6), is_adj = False), #"score5_40_6_3": MyConfStableLTa(classifier=Logit2(hs=3, dim=40, dropout=0.6), is_adj = False), # best "score5_40_6_3_adam1": MyConfStableLTa(classifier=Logit3(hs=3, dim=40, dropout=0.6, lr=4e-5), is_adj=False), # best "score5_40_6_3_adam2": MyConfStableLTa(classifier=Logit3(hs=3, dim=40, dropout=0.6, lr=8e-5), is_adj=False), # best #"score5_40_6_3_adam3": MyConfStableLTa(classifier=Logit3(hs=3, dim=40, dropout=0.6, lr=2e-5), is_adj = False), # best #"score5_40_6_3_adam4": MyConfStableLTa(classifier=Logit3(hs=3, dim=40, dropout=0.6, lr=1e-6), is_adj = False), # best #"score5_40_6_4": MyConfStableLTa(classifier=Logit2(hs=4, dim=40, dropout=0.6), is_adj = False), #"score5_40_6_5": MyConfStableLTa(classifier=Logit2(hs=5, dim=40, dropout=0.6), is_adj = False), #"score5_40_6_6": MyConfStableLTa(classifier=Logit2(hs=6, dim=40, dropout=0.6), is_adj = False), #"score5_40_8": MyConfStableLTa(classifier=Logit2(dim=40, dropout=0.8), is_adj = False), #"score5_40_10": MyConfStableLTa(classifier=Logit2(dim=40, dropout=1.0), is_adj = False), #"score5_48": MyConfStableLTa(classifier=Logit2(dim=48), is_adj = False), #"ccl2": MyConfStableLTa(classifier=Logit2(), is_adj = False), #"ccl3": MyConfStableLTa(classifier=Logit2(dim=10, hs=6), is_adj = False), #"delta": MyConfStableLTa(classifier=Logit(nb_epoch=10), is_adj = False), #"delta2": MyConfStableLTa(classifier=Logit(nb_epoch=20), is_adj = False),
import pickle import pandas as pd import numpy as np local_path = os.path.dirname(__file__) root = os.path.join(local_path, '..',"..") sys.path.append(root) from main import base from main.base.score2 import ScoreLabel from main.work import model from main.work import build from main.work.conf import MyConfStableLTa from main.model import ana confer = MyConfStableLTa() #build.work(confer) #model.work(confer) df = pd.read_pickle(os.path.join(root, 'output', "result_20170205.pkl")) print(ana.roc_auc(df, confer)) clazz_file_name = confer.get_classifier_file() with open(clazz_file_name, 'rb') as fin: clazz = pickle.load(fin) feat_names = base.get_feat_names(df) ipts = sorted(clazz.get_feature_importances(feat_names).items(), key=lambda a:a[1], reverse=True)
def get_confs2(): score = 5 return [ MyConfStableLTa(classifier=ccl2(batch_size=32, nb_epoch=10), score=score), ]
def get_confs2(): score = 5 return [ MyConfStableLTa(classifier=Ts(max_iterations=20000), score=score), ]
import pickle import pandas as pd import numpy as np local_path = os.path.dirname(__file__) root = os.path.join(local_path, '..', "..") sys.path.append(root) from main import base from main.base.score2 import ScoreLabel from main.work import model from main.work import build from main.work.conf import MyConfStableLTa from main.model import ana confer = MyConfStableLTa() #build.work(confer) #model.work(confer) df = pd.read_pickle(os.path.join(root, 'output', "result_20170205.pkl")) print(ana.roc_auc(df, confer)) clazz_file_name = confer.get_classifier_file() with open(clazz_file_name, 'rb') as fin: clazz = pickle.load(fin) feat_names = base.get_feat_names(df) ipts = sorted(clazz.get_feature_importances(feat_names).items(), key=lambda a: a[1], reverse=True)
iter_num = 2 abtest_models = { #"Logit10":Logit2(nb_epoch=10), "Logit20":Logit2(nb_epoch=20), "Logit30":Logit2(nb_epoch=30), #"Logit30-10":Logit2(nb_epoch=30, hs=10), #"Logit40":Logit2(nb_epoch=40), "Logit50":Logit2(nb_epoch=50), #"Logit80":Logit2(nb_epoch=80), #"MDN" : MyMdnClassifier(), } abtest_confs = { #"adj": MyConfStableLTa(classifier=Logit2(30), is_adj= True), #"score5": MyConfStableLTa(classifier=Logit2(30), is_adj = False), "score4": MyConfStableLTa(classifier=Logit2(30), is_adj = False, score=4), "score6": MyConfStableLTa(classifier=Logit2(30), is_adj = False, score=6), #"score2": MyConfStableLTa(classifier=Logit2(30), is_adj = False, score=2), #"score8": MyConfStableLTa(classifier=Logit2(30), is_adj = False, score=8), #"score32": MyConfStableLTa(classifier=Logit2(30), is_adj = False, score=32), } result_dict = {} from optparse import OptionParser parser = OptionParser() parser.add_option('-f', '--force', action='store_true',default = False, dest='force', help = 'do not use any tmp file') (options, args) = parser.parse_args() report_file = os.path.join(root, 'data', 'report', 'abtest.txt') fd = open(report_file, "w") for model_name in abtest_confs.keys():