def blur_mask_old(img): assert isinstance(img, numpy.ndarray), 'img_col must be a numpy array' assert img.ndim == 3, 'img_col must be a color image ({0} dimensions currently)'.format(img.ndim) blur_mask = numpy.zeros(img.shape[:2], dtype=numpy.uint8) for mask, loc in get_masks(img): logger.debug('Checking Mask: {0}'.format(numpy.unique(mask))) logger.debug('SuperPixel Mask Percentage: {0}%'.format(int((100.0/255.0)*(numpy.sum(mask)/mask.size)))) img_fft, val, blurry = main.blur_detector(img[loc[0]:loc[2], loc[1]:loc[3]]) logger.debug('Blurry: {0}'.format(blurry)) if blurry: blur_mask = cv2.add(blur_mask, mask) result = numpy.sum(blur_mask)/(255.0*blur_mask.size) logger.info('{0}% of input image is blurry'.format(int(100*result))) return blur_mask, result
def blur_mask(img): assert isinstance(img, numpy.ndarray), 'img_col must be a numpy array' assert img.ndim == 3, 'img_col must be a color image ({0} dimensions currently)'.format(img.ndim) msk, val, blurry = main.blur_detector(img) logger.debug('inverting img_fft') msk = cv2.convertScaleAbs(255-(255*msk/numpy.max(msk))) msk[msk < 50] = 0 msk[msk > 127] = 255 logger.debug('removing border') msk = remove_border(msk) logger.debug('applying erosion and dilation operators') msk = morphology(msk) logger.debug('evaluation complete') result = numpy.sum(msk)/(255.0*msk.size) logger.info('{0}% of input image is blurry'.format(int(100*result))) return msk, result, blurry
def blur_mask(img): assert isinstance(img, numpy.ndarray), 'img_col must be a numpy array' assert img.ndim == 3, 'img_col must be a color image ({0} dimensions currently)'.format( img.ndim) msk, val, blurry = main.blur_detector(img) logger.debug('inverting img_fft') msk = cv2.convertScaleAbs(255 - (255 * msk / numpy.max(msk))) msk[msk < 50] = 0 msk[msk > 127] = 255 logger.debug('removing border') msk = remove_border(msk) logger.debug('applying erosion and dilation operators') msk = morphology(msk) logger.debug('evaluation complete') result = numpy.sum(msk) / (255.0 * msk.size) logger.info('{0}% of input image is blurry'.format(int(100 * result))) return msk, result, blurry
def blur_mask_old(img): assert isinstance(img, numpy.ndarray), 'img_col must be a numpy array' assert img.ndim == 3, 'img_col must be a color image ({0} dimensions currently)'.format( img.ndim) blur_mask = numpy.zeros(img.shape[:2], dtype=numpy.uint8) for mask, loc in get_masks(img): logger.debug('Checking Mask: {0}'.format(numpy.unique(mask))) logger.debug('SuperPixel Mask Percentage: {0}%'.format( int((100.0 / 255.0) * (numpy.sum(mask) / mask.size)))) img_fft, val, blurry = main.blur_detector(img[loc[0]:loc[2], loc[1]:loc[3]]) logger.debug('Blurry: {0}'.format(blurry)) if blurry: blur_mask = cv2.add(blur_mask, mask) result = numpy.sum(blur_mask) / (255.0 * blur_mask.size) logger.info('{0}% of input image is blurry'.format(int(100 * result))) return blur_mask, result