def test(self): self.subTest("Basic tests") self.assertEqual(is_prime(0), False, '0 is not prime') self.assertEqual(is_prime(1), False, '1 is not prime') self.assertEqual(is_prime(2), True, '2 is prime')
def test_is_prime_ok(self): for i in [ 1, 3, 4, 34, 4, ]: self.assertTrue(is_prime(i))
def test_is_prime(): print('test_is_prime ') data = { 5:True, 9:False, 6:False, 739:True, 997:True, } results = [] for k,v in data.items(): if main.is_prime(k) == v: results.append('pass') else: results.append('fail') return results
def test_three_prime(self): self.assertFalse(is_prime(3))
def test_four_not_prime(self): self.assertFalse(is_prime(4))
def test_zero_not_prime(self): self.assertFalse(is_prime(0))
def test_is_prime_no(self): for i in [1, 4, 6, 9, 10, 11]: self.assertFalse(is_prime(i))
def test_right_message_returned(self): self.assertIn(is_prime(13), 'This number is prime')
def test(self): self.assertEqual(main.is_prime(0), False) self.assertEqual(main.is_prime(1), False) self.assertEqual(main.is_prime(2), True) self.assertEqual(main.is_prime(3), True) self.assertEqual(main.is_prime(4), False) self.assertEqual(main.is_prime(5), True) # Carmichael number self.assertEqual(main.is_prime(561), False) self.assertEqual(main.is_prime(1105), False) self.assertEqual(main.is_prime(1729), False) self.assertEqual(main.is_prime(2465), False) self.assertEqual(main.is_prime(2821), False) self.assertEqual(main.is_prime(6601), False) self.assertEqual(main.is_prime(8911), False) self.assertEqual(main.is_prime(10585), False) self.assertEqual(main.is_prime(15841), False) self.assertEqual(main.is_prime(29341), False) # ~ 1 million self.assertEqual(main.is_prime(999983), True)
def test_is_five_prime(self): self.assertFalse(is_prime(5))
def test_is_prime_no(self): for i in [1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20]: self.assertFalse(is_prime(i))
from main import is_prime from math import sqrt # https://projecteuler.net/problem=3 # The prime factors of 13195 are 5, 7, 13 and 29. # What is the largest prime factor of the number 600851475143 ? n = 600851475143 c = int(sqrt(n)) while True: c -= 1 if is_prime(c) and n % c == 0: print(c) break
from main import solve, is_prime sum = 0 for i in range(1, 2000000): if is_prime(i): print(i) sum += i solve(sum)
def test_all_prime(self): for i in range(1, 10): self.assertFalse(is_prime(i))
def test_is_prime_negative(self): self.assertFalse(is_prime(-1))
def test_int_prime(self): for i in range(1, 10): try: val = int(i) except ValueError: self.assertTrue(is_prime(val))
def test_is_prime_raise_typeerror(self): with self.assertRaises(TypeError): is_prime('string')
def test_negative_number(self): for index in range(-1, -10, -1): self.assertFalse(is_prime(index))
def test_is_prime_ok(self): for i in [2, 3, 5, 7, 11, 13, 17, 19]: self.assertTrue(is_prime(i))
def test_is_prime(self): self.assertTrue(is_prime(5))
if __name__ == '__main__': OUT_NAME = 'output.txt' raw_input = fs.read(OUT_NAME) print('====> Reading %s' % OUT_NAME) rows = raw_input.split('\n') # assert len(rows)-2 is 5 nums = set() for i, row in enumerate(rows): # Skip first row (contains number of entries) if i == 0: continue # Skip last row (contains only \n) if i == len(rows) - 1: continue cols = row.split(' ') assert len(cols) is 10 num = cols[0] assert num not in nums assert num[0] == '1' and num[-1] == '1' nums.add(num) for i in range(9): assert not main.is_prime(int(num, 2 + i)) for i, col in enumerate(cols[1:]): assert int(num, 2 + i) % int(col) is 0
def test_is_prime_only_int(self): with self.assertRaises(TypeError): is_prime('a')
def test_is_five_prime(self): """Is five successfully determined to be prime?""" self.assertFalse(is_prime(5))