예제 #1
0
    def test_segment_contains(self):
        sg1 = segment((0,0),(-8,0))
        self.assertTrue(sg1.contains((-2,0)))
        self.assertFalse(sg1.contains((-2,1)))

        sg1 = segment((0,0),(0,10))
        self.assertFalse(sg1.contains((0,-20)))
        self.assertTrue(sg1.contains((0,1)))
 def make_system(self):  # called first
     self.size = self.options['size']
     self.resolution = self.options['resolution']
     lx, ly = self.size[0], self.size[1]
     cell_size_max = max(lx / self.resolution[0], ly / self.resolution[1])
     if (self.min_mean_free_path != None
             and cell_size_max > self.min_mean_free_path):
         message = "Max cell size is {:e} m and higher than the min mean free path which is {:e}.".format(
             cell_size_max, self.min_mean_free_path)
         warnings.warn(message)
     self.size = [lx, ly, self.options['lz']]
     walls = [segment(Point(0,0),Point(0,ly)), segment(Point(0,0),Point(lx,0)), \
         segment(Point(lx,0),Point(lx,ly)), segment(Point(0,ly),Point(lx,ly))]
     return walls
def start():
    files = []
    files.extend([
        os.path.join(".saved/tags/blocks", f)
        for f in os.listdir(".saved/tags/blocks")
        if os.path.isfile(os.path.join(".saved/tags/blocks", f))
    ])
    files.extend([
        os.path.join(".saved/tags/entity_types", f)
        for f in os.listdir(".saved/tags/entity_types")
        if os.path.isfile(os.path.join(".saved/tags/entity_types", f))
    ])
    files.extend([
        os.path.join(".saved/tags/items", f)
        for f in os.listdir(".saved/tags/items")
        if os.path.isfile(os.path.join(".saved/tags/items", f))
    ])
    files.extend([
        os.path.join(".saved/tags/liquids", f)
        for f in os.listdir(".saved/tags/liquids")
        if os.path.isfile(os.path.join(".saved/tags/liquids", f))
    ])

    for f in files:
        sp = f.split("/")
        if main.segment("minecraft:", 0, sp[-1]):
            split = f.split(":")
            if not split[1].endswith(".txt"):
                os.rename(f, f"{'/'.join(sp[:-1])}/minecraft_{split[1]}.txt")
            else:
                os.rename(f, f"{'/'.join(sp[:-1])}/minecraft_{split[1]}")
예제 #4
0
    def test_segment_intersection(self):
        sg1 = segment([0,0], [2,0])
        sg2 = segment([1,0], [1,2])
        self.assertEqual(sg1.intersect(sg2), (1,0))
        self.assertEqual(sg2.intersect(sg1), (1,0))

        sg3 = segment((10,0),(20,0))
        self.assertIsNone(sg1.intersect(sg3))

        sg1 = segment((0,0),(8,0))
        sg2 = segment((6,3),(6,7))
        self.assertIsNone(sg1.intersect(sg2))
        self.assertIsNone(sg2.intersect(sg1))

        sg1 = segment((0,0),(-8,0))
        sg2 = segment((-2,1),(-2,-7))
        self.assertEqual(sg1.intersect(sg2), (-2,0))
        self.assertEqual(sg2.intersect(sg1), (-2,0))
예제 #5
0
            #            loss_tmp, acc_tmp = sess.run([loss_op, accuracy], feed_dict={X: batch_x, X_length: batch_x_length,
            #                                                                                 Y: batch_y})
            #            print(acc_tmp)
            #            pdb.set_trace()
            res = {}  # key: three keys for each word in tweet
            for j in range(batch_x_length[i]):
                res[j, 'state'] = state_list[0][0][j]
                res[j, 'word'] = vocab_by_value[batch_x[i][j]]
                res[j, 'predicted'] = predicted[j]
            result.append(res)

    return previous_valid_acc, result, batch_y


embed_size = 20
full, vocab_dict, embedding_matrix = segment('train.csv', size=embed_size)

vocab_by_value = {}
for key in vocab_dict:
    vocab_by_value[vocab_dict[key]] = key

num_hidden = 3
dropout = 1  #this is actually 1-dropout...

previous_valid_acc, result, batch_y = train_and_visualize(num_hidden, dropout)


def plot_neuron(neuron_num):
    for i in range(len(result)):  #each res is a tweet
        words = []  #contains words and prediction so far
        acts = []