예제 #1
0
def draw():
    data=md.loadData('result.tl')
    for n,(k,v) in enumerate(data.iteritems()):
        mat=v[2]['matrix']
        path='fig/fig_%s'%k
        os.mkdir(path)
        for i in range(0,len(mat),1):
            drawHeatMap(mat[i],os.path.join(path,'%d.png'%i),3*k,i*div[n])
예제 #2
0
def draw():
    data = md.loadData('result.tl')
    for n, (k, v) in enumerate(data.iteritems()):
        mat = v[2]['matrix']
        path = 'fig/fig_%s' % k
        os.mkdir(path)
        for i in range(0, len(mat), 1):
            drawHeatMap(mat[i], os.path.join(path, '%d.png' % i), 3 * k,
                        i * div[n])
예제 #3
0
def draw1():
    data=md.loadData('result1.tl')
    n=4
    k=25
    v=data[k]
    mat=v[3]['matrix']
    path='fig/fig_%s'%k
    if not os.path.exists(path):
        os.mkdir(path)
    for i in range(0,len(mat),2):
        drawHeatMap(mat[i],os.path.join(path,'%d.png'%int(i/2)),3*k,i*div[n])
예제 #4
0
def draw1():
    data = md.loadData('result1.tl')
    n = 4
    k = 25
    v = data[k]
    mat = v[3]['matrix']
    path = 'fig/fig_%s' % k
    if not os.path.exists(path):
        os.mkdir(path)
    for i in range(0, len(mat), 2):
        drawHeatMap(mat[i], os.path.join(path, '%d.png' % int(i / 2)), 3 * k,
                    i * div[n])
예제 #5
0
def draw():
    global SL

    data=md.loadData('result.tl')
    for k,v in data.iteritems():
        SL=14.0/k
        L=[]
        for i in range(k-1):
            L.append(-7+(i+1)*SL-0.01)
        X1=np.insert(X,0,L)
        X1.sort()
        plt.figure(k)
        plt.plot(X,Y,'b.',alpha=0.6,label="measure point")
        plt.plot(X1,map(realLineFunc(v[0]['param']),X1),c="red",lw=2,ls="-",alpha=0.7,label="M1")
        plt.plot(X1,map(realLineFunc(v[1]['param']),X1),c="blue",lw=2,ls="-",alpha=0.7,label="M2")
        plt.plot(X1,map(realLineFunc(v[2]['param']),X1),c="black",lw=2,ls="--",alpha=0.7,label="M3")
        plt.plot(X1,map(lambda x:10*math.sin(0.6*x),X1),c="cyan",lw=2,ls="-",alpha=0.7,label="real function")
        plt.legend(loc='best')
        plt.title("fitting interval sin curve with  quadratic curve by %s partition"%k)
        plt.xlabel('x')
        plt.ylabel('y')
        plt.savefig('img/img_%s.pdf'%k)
예제 #6
0
__author__ = "luzhijun"
'''
cma restart test
'''
import cma
import math
import numpy as np
import matplotlib.pyplot as plt
from multiprocessing import Pool
import makeData as md
import time

plt.rc('figure', figsize=(16, 9))
PI = math.pi
E = math.exp
data = md.loadData('data.tl')
X = data[0]
Y = data[1]
RANGE = max(Y) - min(Y)

PN = 300
ALPHA = 0.01
BETA = PI / 18.0

PARTITION = 5

DIM = 3 * PARTITION
SPN = int(PN / PARTITION)
SL = 14.0 / PARTITION

L = []
예제 #7
0
sys.path.append('..')
import makeData

shuffling = True
scaling = True
max_cmd_vel_linear_x = 0.5
max_cmd_vel_angular_z = 1
bias_cmd_vel_angular = 0
max_iteration = 10001
disp_epoch = 50
save_epoch = 2000
#imgwidth=80;
#imgheight=60;

# first make data
inputs, labels = makeData.loadData('../data/data518/', resize=None)
batchsize = 16
Ndata = len(labels)

vmode = 0  #0 for speed, 1 for angular velocity

images = []
cmdvels = []

randomidx = range(Ndata)
random.shuffle(randomidx)

for i in range(Ndata):
    images.append(inputs[randomidx[i]])
    cmdvels.append(labels[randomidx[i]])
예제 #8
0
#!usr/bin/env python
#encoding: utf-8
__author__="luzhijun"
'''
make linear data sets
'''

import numpy as np
import math
import makeData as md
import matplotlib.pyplot as plt
plt.rc('figure', figsize=(16, 9))

dataSet=md.loadData('data.tl')
X=dataSet[0]
Y=dataSet[1]

def realLineFunc(param):
    def f(x):
        i=int(math.floor((x+7)/SL))
        return np.poly1d(param[3*i:3*(i+1)])(x)
    return f


def draw():
    global SL

    data=md.loadData('result.tl')
    for k,v in data.iteritems():
        SL=14.0/k
        L=[]
예제 #9
0
파일: p5.py 프로젝트: luzhijun/Optimization
__author__="luzhijun"
'''
cma restart test
'''
import cma
import math
import numpy as np
import matplotlib.pyplot as plt
from multiprocessing import Pool
import makeData as md
import time

plt.rc('figure', figsize=(16, 9))
PI=math.pi
E=math.exp
data=md.loadData('data.tl')
X=data[0]
Y=data[1]
RANGE=max(Y)-min(Y)

PN=300
ALPHA=0.01
BETA=PI/18.0

PARTITION=5

DIM=3*PARTITION
SPN=int(PN/PARTITION)
SL=14.0/PARTITION

L=[]