예제 #1
0
from sklearn import neighbors
from sklearn.decomposition import PCA, IncrementalPCA, KernelPCA

import make_dataset

if __name__ == '__main__':

    test_file_names = os.listdir('/media/dick/Storage/test')
    N_test = len(test_file_names)
    print(str(N_test) + ' test files.')

    train_file_names = os.listdir('/media/dick/Storage64GB_2/train')
    N_train = len(train_file_names)
    print(str(N_train) + ' train files.')

    array_train, array_list_train = make_dataset.read_retina_images(which_set='train')
    array_test, array_list_test = make_dataset.read_retina_images(which_set='test')

    # train_labels = np.load('/media/dick/Storage64GB_2/train_labels.npy')
    # print(train_labels.shape)

    train_imgs, train_labels = make_dataset.read_retina_images(which_set='train')
    test_imgs, test_labels = make_dataset.read_retina_images(which_set='test')
    N_train, m_train, n_train, chan_train = train_imgs.shape
    N_test, m_test, n_test, chan_test = test_imgs.shape

    # cv2.imshow('image', train_imgs[0])
    # cv2.waitKey(0)
    # cv2.destroyAllWindows()

    print(train_imgs.reshape((N_train, m_train*n_train))[:5000].shape)
예제 #2
0
from wabbit_wappa import *
import make_dataset


def make_features(data):
    length = 64
    features = []
    for i in range(length):
        features.append(str(data[i]))
    return features


if __name__ == '__main__':
    test_file_names = os.listdir('/media/dick/Storage1TB/test')

    train_imgs, train_labels = make_dataset.read_retina_images(which_set='train')
    test_imgs, test_labels = make_dataset.read_retina_images(which_set='test')
    N_train, m_train, n_train, chan_train = train_imgs.shape
    N_test, m_test, n_test, chan_test = test_imgs.shape
    print('# of training examples: ' + str(N_train) + '\n# of testing examples:  ' + str(N_test))
    # of training examples: 1580670
    # of testing examples:  2410920

    y_train = train_labels
    print(len(y_train))

    # Create/Open the memory mapped variables
    X_train = np.memmap('/media/dick/Storage1TB/transformed/train_ipca.mmap',
                        mode='r', shape=(N_train, 64), dtype='float')

    num_train = int(round(0.8*N_train))