from postprocesslen import Processor
import csv
import pyaudio
from significancetest import Trendtest as Tt

sigtest = Tt()

k = open("streamtest/real_time.csv", "w")
writer_log = csv.writer(k, lineterminator="\n")
p = open("streamtest/real_time_report_silent.csv", "w")
writer_log_raw = csv.writer(p, lineterminator="\n")

filter = Processor(file_name="streamtest/predict_sig.csv")
ParseData = DP()
RunGraph = WG()
SetMaker = SM()
JUMPTIME = 2
FRAMERATE = 4096
CHUNK = 8192
OFFSET = 512
TIMEOUT = 4096
TIMEOUTSECS = TIMEOUT / FRAMERATE
ALPHALEVEL = 0.995
STREAMING_ALPHA_LEVEL = 0.90
FORMAT = pyaudio.paInt16
timex = time.clock()
time_zero = time.clock()
prediction_dictionary = {0: "inhale", 1: "exhale", 2: "unknown"}
x = -1
last_x = -1
time_last = time.clock()
예제 #2
0

class Hyperparameters:
    INPUT_LAYER = 43
    HIDDEN_LAYER = 75  #Modify??
    OUTPUT_LAYER = 3
    NUM_EPOCHS = 10000
    #NUM_EPOCHS = 1
    BATCH_NUMBER = 240
    LEARNING_RATE = 0.1
    VALIDATION_NUMBER = 30
    TEST_NUMBER = 30


HYP = Hyperparameters()
set_maker = SM()
pbfilename = "GraphV5/GRAPHS/GraphV5_frozen.pb"
file_name = "sen_data/inhale/61.wav"
prediction_dictionary = {0: "inhale", 1: "exhale", 2: "unknown"}

with tf.gfile.GFile(pbfilename, "rb") as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())

with tf.Graph().as_default() as graph:
    tf.import_graph_def(graph_def,
                        input_map=None,
                        return_elements=None,
                        name="")
    input = graph.get_tensor_by_name("placeholders/input_placeholder:0")
    output = graph.get_tensor_by_name("prediction_and_loss/output:0")