def _vectorize(self, strings, method='first'): method = method.lower() if method not in ['first', 'last', 'mean', 'word']: raise ValueError( "method not supported, only support 'first', 'last', 'mean' and 'word'" ) input_ids, input_masks, _, s_tokens = bert_tokenization( self._tokenizer, strings) v = self._sess.run( self._vectorizer, feed_dict={ self._X: input_ids, self._input_masks: input_masks }, ) if method == 'first': v = v[:, 0] elif method == 'last': v = v[:, -1] elif method == 'mean': v = np.mean(v, axis=1) else: v = [ merge_sentencepiece_tokens( list(zip(s_tokens[i], v[i][:len(s_tokens[i])])), weighted=False, vectorize=True, ) for i in range(len(v)) ] return v
def vectorize(self, string: str): """ vectorize a string. Parameters ---------- string: List[str] Returns ------- result: np.array """ input_ids, input_masks, segment_ids, s_tokens = xlnet_tokenization( self._tokenizer, [string], space_after_punct=True) s_tokens = s_tokens[0] r = self._execute( inputs=[input_ids, segment_ids, input_masks], input_labels=['Placeholder', 'Placeholder_1', 'Placeholder_2'], output_labels=['vectorizer'], ) v = r['vectorizer'] v = v[0] return merge_sentencepiece_tokens( list(zip(s_tokens, v[:len(s_tokens)])), weighted=False, vectorize=True, model='xlnet', )
def attention(self, strings, method='last', **kwargs): """ Get attention string inputs from bert attention. Parameters ---------- strings : str / list of str method : str, optional (default='last') Attention layer supported. Allowed values: * ``'last'`` - attention from last layer. * ``'first'`` - attention from first layer. * ``'mean'`` - average attentions from all layers. Returns ------- array: attention """ if isinstance(strings, list): if not isinstance(strings[0], str): raise ValueError('input must be a list of strings or a string') else: if not isinstance(strings, str): raise ValueError('input must be a list of strings or a string') if isinstance(strings, str): strings = [strings] method = method.lower() if method not in ['last', 'first', 'mean']: raise Exception( "method not supported, only support 'last', 'first' and 'mean'" ) attentions, s_tokens = self._attention(strings) if method == 'first': cls_attn = list(attentions[0].values())[0][:, :, 0, :] if method == 'last': cls_attn = list(attentions[-1].values())[0][:, :, 0, :] if method == 'mean': combined_attentions = [] for a in attentions: combined_attentions.append(list(a.values())[0]) cls_attn = np.mean(combined_attentions, axis=0).mean(axis=2) cls_attn = np.mean(cls_attn, axis=1) total_weights = np.sum(cls_attn, axis=-1, keepdims=True) attn = cls_attn / total_weights output = [] for i in range(attn.shape[0]): if '[' in self._cls: output.append( merge_wordpiece_tokens(list(zip(s_tokens[i], attn[i])))) else: output.append( merge_sentencepiece_tokens(list(zip(s_tokens[i], attn[i])))) return output
def vectorize(self, string: str): """ vectorize a string. Parameters ---------- string: List[str] Returns ------- result: np.array """ input_ids, input_masks, segment_ids, s_tokens = xlnet_tokenization( self._tokenizer, [string]) s_tokens = s_tokens[0] v = self._sess.run( self._vectorizer, feed_dict={ self._X: input_ids, self._segment_ids: segment_ids, self._input_masks: input_masks, }, ) v = v[0] return merge_sentencepiece_tokens( list(zip(s_tokens, v[:len(s_tokens)])), weighted=False, vectorize=True, model='xlnet', )
def vectorize(self, string: str): """ vectorize a string. Parameters ---------- string: List[str] Returns ------- result: np.array """ parsed_sequence, input_mask, bert_sequence = parse_bert_tagging( string, self._tokenizer) r = self._execute( inputs=[[parsed_sequence]], input_labels=['Placeholder'], output_labels=['vectorizer'], ) v = r['vectorizer'] v = v[0] return merge_sentencepiece_tokens( list(zip(bert_sequence, v[:len(bert_sequence)])), weighted=False, vectorize=True, )
def vectorize(self, strings: List[str], labels: List[str], method: str = 'first'): """ vectorize a string. Parameters ---------- strings: List[str] labels : List[str] method : str, optional (default='first') Vectorization layer supported. Allowed values: * ``'last'`` - vector from last sequence. * ``'first'`` - vector from first sequence. * ``'mean'`` - average vectors from all sequences. * ``'word'`` - average vectors based on tokens. Returns ------- result: np.array """ strings_left, strings_right, combined = [], [], [] for no, string in enumerate(strings): for label in labels: strings_left.append(string) strings_right.append(f'teks ini adalah mengenai {label}') combined.append((string, label)) input_ids, input_masks, segment_ids, s_tokens = bert_tokenization_siamese( self._tokenizer, strings_left, strings_right) v = self._sess.run( self._vectorizer, feed_dict={ self._X: input_ids, self._segment_ids: segment_ids, self._input_masks: input_masks, }, ) if len(v.shape) == 2: v = v.reshape((*np.array(input_ids).shape, -1)) if method == 'first': v = v[:, 0] elif method == 'last': v = v[:, -1] elif method == 'mean': v = np.mean(v, axis=1) else: v = [ merge_sentencepiece_tokens( list(zip(s_tokens[i], v[i][:len(s_tokens[i])])), weighted=False, vectorize=True, ) for i in range(len(v)) ] return combined, v
def _vectorize(self, strings, method='first'): method = method.lower() if method not in ['first', 'last', 'mean', 'word']: raise ValueError( "method not supported, only support 'first', 'last', 'mean' and 'word'" ) input_ids, input_masks, segment_ids, s_tokens = xlnet_tokenization( self._tokenizer, strings) r = self._execute( inputs=[input_ids, segment_ids, input_masks], input_labels=['Placeholder', 'Placeholder_1', 'Placeholder_2'], output_labels=['vectorizer'], ) v = r['vectorizer'] if method == 'first': v = v[:, 0] elif method == 'last': v = v[:, -1] elif method == 'mean': v = np.mean(v, axis=1) else: v = [ merge_sentencepiece_tokens( list(zip(s_tokens[i], v[i][:len(s_tokens[i])])), weighted=False, vectorize=True, model='xlnet', ) for i in range(len(v)) ] return v
def vectorize(self, string: str): """ vectorize a string. Parameters ---------- string: List[str] Returns ------- result: np.array """ parsed_sequence, input_mask, bert_sequence = parse_bert_tagging( string, self._tokenizer) v = self._sess.run( self._vectorizer, feed_dict={ self._X: [parsed_sequence], self._input_masks: [input_mask], }, ) v = v[0] return merge_sentencepiece_tokens( list(zip(bert_sequence, v[:len(bert_sequence)])), weighted=False, vectorize=True, )
def vectorize(self, strings: List[str], labels: List[str], method: str = 'first'): """ vectorize a string. Parameters ---------- strings: List[str] labels : List[str] method : str, optional (default='first') Vectorization layer supported. Allowed values: * ``'last'`` - vector from last sequence. * ``'first'`` - vector from first sequence. * ``'mean'`` - average vectors from all sequences. * ``'word'`` - average vectors based on tokens. Returns ------- result: np.array """ strings_left, strings_right, combined = [], [], [] for no, string in enumerate(strings): for label in labels: strings_left.append(string) strings_right.append(f'teks ini adalah mengenai {label}') combined.append((string, label)) input_ids, input_masks, segment_ids, s_tokens = xlnet_tokenization_siamese( self._tokenizer, strings_left, strings_right) r = self._execute( inputs=[input_ids, segment_ids, input_masks], input_labels=['Placeholder', 'Placeholder_1', 'Placeholder_2'], output_labels=['vectorizer'], ) v = r['vectorizer'] v = np.transpose(v, [1, 0, 2]) if method == 'first': v = v[:, 0] elif method == 'last': v = v[:, -1] elif method == 'mean': v = np.mean(v, axis=1) else: v = [ merge_sentencepiece_tokens( list(zip(s_tokens[i], v[i][:len(s_tokens[i])])), weighted=False, vectorize=True, model='xlnet', ) for i in range(len(v)) ] return combined, v
def vectorize(self, strings: List[str], method: str = 'first'): """ vectorize list of strings. Parameters ---------- strings: List[str] method : str, optional (default='first') Vectorization layer supported. Allowed values: * ``'last'`` - vector from last sequence. * ``'first'`` - vector from first sequence. * ``'mean'`` - average vectors from all sequences. * ``'word'`` - average vectors based on tokens. Returns ------- result: np.array """ method = method.lower() if method not in ['first', 'last', 'mean', 'word']: raise ValueError( "method not supported, only support 'first', 'last', 'mean' and 'word'" ) tokenization = {'bert': bert_tokenization, 'xlnet': xlnet_tokenization} input_ids, input_masks, segment_ids, s_tokens = tokenization[ self._mode](self._tokenizer, strings) r = self._execute( inputs=[input_ids, segment_ids, input_masks], input_labels=['Placeholder', 'Placeholder_1', 'Placeholder_2'], output_labels=['logits_vectorize'], ) v = r['logits_vectorize'] if method == 'first': v = v[:, 0] elif method == 'last': v = v[:, -1] elif method == 'mean': v = np.mean(v, axis=1) else: v = [ merge_sentencepiece_tokens( list(zip(s_tokens[i], v[i][:len(s_tokens[i])])), weighted=False, vectorize=True, model=self._mode, ) for i in range(len(v)) ] return v
def vectorize(self, strings: List[str], method: str = 'first'): """ vectorize list of strings. Parameters ---------- strings: List[str] method : str, optional (default='first') Vectorization layer supported. Allowed values: * ``'last'`` - vector from last sequence. * ``'first'`` - vector from first sequence. * ``'mean'`` - average vectors from all sequences. * ``'word'`` - average vectors based on tokens. Returns ------- result: np.array """ method = method.lower() if method not in ['first', 'last', 'mean', 'word']: raise ValueError( "method not supported, only support 'first', 'last', 'mean' and 'word'" ) input_ids, input_masks, segment_ids, s_tokens = xlnet_tokenization( self._tokenizer, strings) v = self._sess.run( self._vectorizer, feed_dict={ self._X: input_ids, self._segment_ids: segment_ids, self._input_masks: input_masks, }, ) if method == 'first': v = v[:, 0] elif method == 'last': v = v[:, -1] elif method == 'mean': v = np.mean(v, axis=1) else: v = [ merge_sentencepiece_tokens( list(zip(s_tokens[i], v[i][:len(s_tokens[i])])), weighted=False, vectorize=True, model='xlnet', ) for i in range(len(v)) ] return v
def attention(self, strings: List[str], method: str = 'last', **kwargs): """ Get attention string inputs. Parameters ---------- strings : List[str] method : str, optional (default='last') Attention layer supported. Allowed values: * ``'last'`` - attention from last layer. * ``'first'`` - attention from first layer. * ``'mean'`` - average attentions from all layers. Returns ------- result : List[List[Tuple[str, float]]] """ method = method.lower() if method not in ['last', 'first', 'mean']: raise Exception( "method not supported, only support ['last', 'first', 'mean']" ) attentions, s_tokens, _ = self._attention(strings) if method == 'first': cls_attn = np.transpose(attentions[0][:, 0], (1, 0, 2)) if method == 'last': cls_attn = np.transpose(attentions[-1][:, 0], (1, 0, 2)) if method == 'mean': cls_attn = np.transpose( np.mean(attentions, axis = 0).mean(axis = 1), (1, 0, 2) ) cls_attn = np.mean(cls_attn, axis = 1) total_weights = np.sum(cls_attn, axis = -1, keepdims = True) attn = cls_attn / total_weights output = [] for i in range(attn.shape[0]): output.append( merge_sentencepiece_tokens( list(zip(s_tokens[i], attn[i])), model = 'xlnet' ) ) return output
def attention(self, strings: List[str], method: str = 'last', **kwargs): """ Get attention string inputs from bert attention. Parameters ---------- strings : str / list of str method : str, optional (default='last') Attention layer supported. Allowed values: * ``'last'`` - attention from last layer. * ``'first'`` - attention from first layer. * ``'mean'`` - average attentions from all layers. Returns ------- result : List[List[Tuple[str, float]]] """ method = method.lower() if method not in ['last', 'first', 'mean']: raise Exception( "method not supported, only support 'last', 'first' and 'mean'" ) attentions, s_tokens, _ = self._attention(strings) if method == 'first': cls_attn = list(attentions[0].values())[0][:, :, 0, :] if method == 'last': cls_attn = list(attentions[-1].values())[0][:, :, 0, :] if method == 'mean': combined_attentions = [] for a in attentions: combined_attentions.append(list(a.values())[0]) cls_attn = np.mean(combined_attentions, axis=0).mean(axis=2) cls_attn = np.mean(cls_attn, axis=1) total_weights = np.sum(cls_attn, axis=-1, keepdims=True) attn = cls_attn / total_weights output = [] for i in range(attn.shape[0]): output.append( merge_sentencepiece_tokens(list(zip(s_tokens[i], attn[i])))) return output
def _paraphrase(self, strings): batch_x, input_masks, input_segments, _ = bert_tokenization( self._tokenizer, strings) outputs = self._sess.run( self._logits, feed_dict={ self._X: batch_x, self._segment_ids: input_segments, self._input_masks: input_masks, }, )[:, 0, :].tolist() results = [] for output in outputs: output = [i for i in output if i > 0] output = self._tokenizer.convert_ids_to_tokens(output) output = [(t, 1) for t in output] output = merge_sentencepiece_tokens(output) output = [t[0] for t in output] results.append(' '.join(output)) return results
def vectorize(self, string: str): """ vectorize a string. Parameters ---------- string: List[str] Returns ------- result: np.array """ s = string.split() sentences = [s] if self._mode == 'bert': f = constituency_bert elif self._mode == 'xlnet': f = constituency_xlnet else: raise ValueError( 'mode not supported, only supported `bert` or `xlnet`') i, m, tokens = f(self._tokenizer, sentences) r = self._execute( inputs=[i, m], input_labels=['input_ids', 'word_end_mask'], output_labels=['vectorizer'], ) v = r['vectorizer'] if self._mode == 'bert': v = v[0] elif self._mode == 'xlnet': v = v[:, 0] return merge_sentencepiece_tokens( list(zip(tokens[0], v[:len(tokens[0])])), weighted=False, vectorize=True, model=self._mode, )
def predict_words(self, string: str, method: str = 'last', visualization: bool = True): """ classify words. Parameters ---------- string : str method : str, optional (default='last') Attention layer supported. Allowed values: * ``'last'`` - attention from last layer. * ``'first'`` - attention from first layer. * ``'mean'`` - average attentions from all layers. visualization: bool, optional (default=True) If True, it will open the visualization dashboard. Returns ------- dictionary: results """ method = method.lower() if method not in ['last', 'first', 'mean']: raise ValueError( "method not supported, only support 'last', 'first' and 'mean'" ) input_ids, input_masks, segment_ids, s_tokens = xlnet_tokenization( self._tokenizer, [string]) r = self._execute( inputs=[input_ids, segment_ids, input_masks], input_labels=['Placeholder', 'Placeholder_1', 'Placeholder_2'], output_labels=['logits', 'attention', 'logits_seq'], ) result = sigmoid(r['logits']) words = sigmoid(r['logits_seq']) attentions = r['attention'] if method == 'first': cls_attn = attentions[0][:, :, 0, :] if method == 'last': cls_attn = attentions[-1][:, :, 0, :] if method == 'mean': cls_attn = np.mean(attentions, axis=0).mean(axis=2) cls_attn = np.mean(cls_attn, axis=1) total_weights = np.sum(cls_attn, axis=-1, keepdims=True) attn = cls_attn / total_weights result = result[0] words = words[0] weights = [] merged = merge_sentencepiece_tokens(list(zip(s_tokens[0], attn[0])), model='xlnet') for i in range(words.shape[1]): m = merge_sentencepiece_tokens( list(zip(s_tokens[0], words[:, i])), weighted=False, model='xlnet', ) _, weight = zip(*m) weights.append(weight) w, a = zip(*merged) words = np.array(weights).T distribution_words = words[:, np.argmax(words.sum(axis=0))] y_histogram, x_histogram = np.histogram(distribution_words, bins=np.arange(0, 1, 0.05)) y_histogram = y_histogram / y_histogram.sum() x_attention = np.arange(len(w)) left, right = np.unique(np.argmax(words, axis=1), return_counts=True) left = left.tolist() y_barplot = [] for i in range(len(self._label)): if i not in left: y_barplot.append(i) else: y_barplot.append(right[left.index(i)]) dict_result = {self._label[i]: result[i] for i in range(len(result))} dict_result['alphas'] = {w: a[no] for no, w in enumerate(w)} dict_result['word'] = {w: words[no] for no, w in enumerate(w)} dict_result['histogram'] = {'x': x_histogram, 'y': y_histogram} dict_result['attention'] = {'x': x_attention, 'y': np.array(a)} dict_result['barplot'] = {'x': self._label, 'y': y_barplot} dict_result['module'] = self._module if visualization: _render_toxic(dict_result) else: return dict_result
def _predict_words(self, string, method, visualization, add_neutral=False): method = method.lower() if method not in ['last', 'first', 'mean']: raise ValueError( "method not supported, only support 'last', 'first' and 'mean'" ) if add_neutral: label = self._label + ['neutral'] else: label = self._label input_ids, input_masks, segment_ids, s_tokens = xlnet_tokenization( self._tokenizer, [string]) r = self._execute( inputs=[input_ids, segment_ids, input_masks], input_labels=['Placeholder', 'Placeholder_1', 'Placeholder_2'], output_labels=['logits', 'attention', 'logits_seq'], ) result = softmax(r['logits'], axis=-1) words = softmax(r['logits_seq'], axis=-1) attentions = r['attention'] if method == 'first': cls_attn = attentions[0][:, :, 0, :] if method == 'last': cls_attn = attentions[-1][:, :, 0, :] if method == 'mean': cls_attn = np.mean(attentions, axis=0).mean(axis=2) cls_attn = np.mean(cls_attn, axis=1) total_weights = np.sum(cls_attn, axis=-1, keepdims=True) attn = cls_attn / total_weights words = words[0] if add_neutral: result = neutral(result) words = neutral(words) result = result[0] weights = [] merged = merge_sentencepiece_tokens(list(zip(s_tokens[0], attn[0])), model='xlnet') for i in range(words.shape[1]): m = merge_sentencepiece_tokens( list(zip(s_tokens[0], words[:, i])), weighted=False, model='xlnet', ) _, weight = zip(*m) weights.append(weight) w, a = zip(*merged) words = np.array(weights).T distribution_words = words[:, np.argmax(words.sum(axis=0))] y_histogram, x_histogram = np.histogram(distribution_words, bins=np.arange(0, 1, 0.05)) y_histogram = y_histogram / y_histogram.sum() x_attention = np.arange(len(w)) left, right = np.unique(np.argmax(words, axis=1), return_counts=True) left = left.tolist() y_barplot = [] for i in range(len(label)): if i not in left: y_barplot.append(i) else: y_barplot.append(right[left.index(i)]) dict_result = {label[i]: result[i] for i in range(len(result))} dict_result['alphas'] = {w: a[no] for no, w in enumerate(w)} dict_result['word'] = {w: words[no] for no, w in enumerate(w)} dict_result['histogram'] = {'x': x_histogram, 'y': y_histogram} dict_result['attention'] = {'x': x_attention, 'y': np.array(a)} dict_result['barplot'] = {'x': label, 'y': y_barplot} dict_result['module'] = self._module if visualization: render_dict[self._module](dict_result) else: return dict_result
def _predict_words(self, string, method, visualization, add_neutral=False): method = method.lower() if method not in ['last', 'first', 'mean']: raise ValueError( "method not supported, only support 'last', 'first' and 'mean'" ) if add_neutral: label = self._label + ['neutral'] else: label = self._label batch_x, batch_mask, _, s_tokens = bert_tokenization( self._tokenizer, [string]) result, attentions, words = self._sess.run( [self._softmax, self._attns, self._softmax_seq], feed_dict={ self._X: batch_x, self._input_masks: batch_mask }, ) if method == 'first': cls_attn = list(attentions[0].values())[0][:, :, 0, :] if method == 'last': cls_attn = list(attentions[-1].values())[0][:, :, 0, :] if method == 'mean': combined_attentions = [] for a in attentions: combined_attentions.append(list(a.values())[0]) cls_attn = np.mean(combined_attentions, axis=0).mean(axis=2) cls_attn = np.mean(cls_attn, axis=1) total_weights = np.sum(cls_attn, axis=-1, keepdims=True) attn = cls_attn / total_weights words = words[0] if add_neutral: result = neutral(result) words = neutral(words) result = result[0] weights = [] merged = merge_sentencepiece_tokens(list(zip(s_tokens[0], attn[0]))) for i in range(words.shape[1]): m = merge_sentencepiece_tokens(list(zip(s_tokens[0], words[:, i])), weighted=False) _, weight = zip(*m) weights.append(weight) w, a = zip(*merged) words = np.array(weights).T distribution_words = words[:, np.argmax(words.sum(axis=0))] y_histogram, x_histogram = np.histogram(distribution_words, bins=np.arange(0, 1, 0.05)) y_histogram = y_histogram / y_histogram.sum() x_attention = np.arange(len(w)) left, right = np.unique(np.argmax(words, axis=1), return_counts=True) left = left.tolist() y_barplot = [] for i in range(len(label)): if i not in left: y_barplot.append(i) else: y_barplot.append(right[left.index(i)]) dict_result = {label[i]: result[i] for i in range(len(result))} dict_result['alphas'] = {w: a[no] for no, w in enumerate(w)} dict_result['word'] = {w: words[no] for no, w in enumerate(w)} dict_result['histogram'] = {'x': x_histogram, 'y': y_histogram} dict_result['attention'] = {'x': x_attention, 'y': np.array(a)} dict_result['barplot'] = {'x': label, 'y': y_barplot} dict_result['class_name'] = self._class_name if visualization: render_dict[self._class_name](dict_result) else: return dict_result
def predict_words(self, string: str, method: str = 'last', visualization: bool = True): """ classify words. Parameters ---------- string : str method : str, optional (default='last') Attention layer supported. Allowed values: * ``'last'`` - attention from last layer. * ``'first'`` - attention from first layer. * ``'mean'`` - average attentions from all layers. visualization: bool, optional (default=True) If True, it will open the visualization dashboard. Returns ------- dictionary: results """ method = method.lower() if method not in ['last', 'first', 'mean']: raise ValueError( "method not supported, only support 'last', 'first' and 'mean'" ) batch_x, input_masks, _, s_tokens = bert_tokenization( self._tokenizer, [string]) result, attentions, words = self._sess.run( [self._sigmoid, self._attns, self._sigmoid_seq], feed_dict={ self._X: batch_x, self._input_masks: input_masks }, ) if method == 'first': cls_attn = list(attentions[0].values())[0][:, :, 0, :] if method == 'last': cls_attn = list(attentions[-1].values())[0][:, :, 0, :] if method == 'mean': combined_attentions = [] for a in attentions: combined_attentions.append(list(a.values())[0]) cls_attn = np.mean(combined_attentions, axis=0).mean(axis=2) cls_attn = np.mean(cls_attn, axis=1) total_weights = np.sum(cls_attn, axis=-1, keepdims=True) attn = cls_attn / total_weights result = result[0] words = words[0] weights = [] merged = merge_sentencepiece_tokens(list(zip(s_tokens[0], attn[0]))) for i in range(words.shape[1]): m = merge_sentencepiece_tokens(list(zip(s_tokens[0], words[:, i])), weighted=False) _, weight = zip(*m) weights.append(weight) w, a = zip(*merged) words = np.array(weights).T distribution_words = words[:, np.argmax(words.sum(axis=0))] y_histogram, x_histogram = np.histogram(distribution_words, bins=np.arange(0, 1, 0.05)) y_histogram = y_histogram / y_histogram.sum() x_attention = np.arange(len(w)) left, right = np.unique(np.argmax(words, axis=1), return_counts=True) left = left.tolist() y_barplot = [] for i in range(len(self._label)): if i not in left: y_barplot.append(i) else: y_barplot.append(right[left.index(i)]) dict_result = {self._label[i]: result[i] for i in range(len(result))} dict_result['alphas'] = {w: a[no] for no, w in enumerate(w)} dict_result['word'] = {w: words[no] for no, w in enumerate(w)} dict_result['histogram'] = {'x': x_histogram, 'y': y_histogram} dict_result['attention'] = {'x': x_attention, 'y': np.array(a)} dict_result['barplot'] = {'x': self._label, 'y': y_barplot} dict_result['class_name'] = self._class_name if visualization: _render_toxic(dict_result) else: return dict_result