def mosaicGradient3D(imIn, imOut, grid=m3D.DEFAULT_GRID3D): """ Builds the mosaic-gradient 3D image of 'imIn' and puts the result in 'imOut'. The mosaic-gradient image is built by computing the differences of two mosaic images generated from 'imIn', the first one having its watershed lines valued by the suprema of the adjacent catchment basins values, the second one been valued by the infima. """ imWrk1 = m3D.image3DMb(imIn) imWrk2 = m3D.image3DMb(imIn) imWrk3 = m3D.image3DMb(imIn) imWrk4 = m3D.image3DMb(imIn) imWrk5 = m3D.image3DMb(imIn) mosaic3D(imIn, imWrk2, imWrk3, grid=grid) m3D.sub3D(imWrk2, imWrk3, imWrk1) m3D.logic3D(imWrk2, imWrk3, imWrk2, "sup") m3D.negate3D(imWrk2, imWrk2) se = m3D.structuringElement3D(m3D.getDirections3D(grid), grid) while m3D.computeVolume3D(imWrk3) != 0: m3D.dilate3D(imWrk1, imWrk4, 2, se=se) m3D.dilate3D(imWrk2, imWrk5, 2, se=se) m3D.logic3D(imWrk4, imWrk3, imWrk4, "inf") m3D.logic3D(imWrk5, imWrk3, imWrk5, "inf") m3D.logic3D(imWrk1, imWrk4, imWrk1, "sup") m3D.logic3D(imWrk2, imWrk5, imWrk2, "sup") m3D.erode3D(imWrk3, imWrk3, 2, se=se) m3D.negate3D(imWrk2, imWrk2) m3D.sub3D(imWrk1, imWrk2, imOut)
def upperGeodesicDilate3D(imIn, imMask, imOut, n=1, se=m3D.CUBOCTAHEDRON1): """ Performs a upper geodesic dilation of 3D image 'imIn' above 'imMask'. The result is put inside 'imOut', 'n' controls the size of the dilation. 'se' specifies the type of structuring element used to perform the computation (CUBOCTAHEDRON by default). Warning! 'imMask' and 'imOut' must be different. """ m3D.logic3D(imIn, imMask, imOut, "sup") if imIn.getDepth() == 1: for i in range(n): m3D.diff3D(imOut, imMask, imOut) m3D.dilate3D(imOut, imOut, se=se) m3D.logic3D(imMask, imOut, imOut, "sup") else: imWrk1 = m3D.image3DMb(imIn) imWrk2 = m3D.image3DMb(imIn, 1) for i in range(n): m3D.generateSupMask3D(imOut, imMask, imWrk2, True) m3D.convertByMask3D(imWrk2, imWrk1, 0, m3D.computeMaxRange3D(imWrk1)[1]) m3D.logic3D(imOut, imWrk1, imOut, "inf") m3D.dilate3D(imOut, imOut, se=se) m3D.logic3D(imOut, imMask, imOut, "sup")
def drawEdge3D(imOut, thick=1): """ Draws a frame around the edge of 'imOut' whose value equals the maximum range value and whose thickness is given by 'thick' (default 1). """ imOut.reset() se=m3D.structuringElement3D(list(m3D.getDirections3D(m3D.CUBIC)), m3D.CUBIC) m3D.dilate3D(imOut, imOut, thick, se=se, edge=mamba.FILLED)
def drawEdge3D(imOut, thick=1): """ Draws a frame around the edge of 'imOut' whose value equals the maximum range value and whose thickness is given by 'thick' (default 1). """ imOut.reset() se = m3D.structuringElement3D(list(m3D.getDirections3D(m3D.CUBIC)), m3D.CUBIC) m3D.dilate3D(imOut, imOut, thick, se=se, edge=mamba.FILLED)
def buildClose3D(imIn, imOut, n=1, se=m3D.CUBOCTAHEDRON1): """ Performs a closing by dual reconstruction operation on 3D image 'imIn' and puts the result in 'imOut'. 'n' controls the size of the closing. """ imWrk = m3D.image3DMb(imIn) m3D.copy3D(imIn, imWrk) m3D.dilate3D(imIn, imOut, n, se=se) m3D.dualBuild3D(imWrk, imOut, grid=se.getGrid())
def linearDilate3D(imIn, imOut, d, n=1, grid=m3D.DEFAULT_GRID3D, edge=mamba.EMPTY): """ Dilation by a segment in direction 'd' of 3D image 'imIn', result in 'imOut'. The operation is repeated 'n' times (default is 1).This function will assume an EMPTY edge unless specified otherwise using 'edge'. The directions are defined according to the grid in use. """ se = m3D.structuringElement3D([0,d], grid) m3D.copy3D(imIn, imOut) m3D.dilate3D(imOut, imOut, n, se=se, edge=edge)
def opening3D(imIn, imOut, n=1, se=m3D.CUBOCTAHEDRON1, edge=mamba.FILLED): """ Performs an opening operation on 3D image 'imIn' and puts the result in 'imOut'. 'n' controls the size of the opening and 'se' the structuring element used. The default edge is set to 'FILLED'. Note that the edge setting operates in the erosion only. """ m3D.erode3D(imIn, imOut, n, se=se, edge=edge) m3D.dilate3D(imOut, imOut, n, se=se.transpose())
def gradient3D(imIn, imOut, n=1, se=m3D.CUBOCTAHEDRON1): """ Computes the morphological gradient of 3D image 'imIn' and puts the result in 'imOut'. The thickness can be controlled using parameter 'n' (1 by default). The structuring element used by the erosion and dilation is defined by 'se' (CUBOCTAHEDRON1 by default). """ imWrk = m3D.image3DMb(imIn) m3D.erode3D(imIn, imWrk, n, se=se) m3D.dilate3D(imIn, imOut, n, se=se) m3D.sub3D(imOut, imWrk, imOut)
def removeEdgeParticles3D(imIn, imOut, grid=m3D.DEFAULT_GRID3D): """ Removes particles (connected components) touching the edge in 3D image 'imIn'. The resulting image is put in image 'imOut'. Although this operator may be used with greytone images, it should be considered with caution. """ imWrk = m3D.image3DMb(imIn) se = m3D.structuringElement3D(m3D.getDirections3D(grid), grid) m3D.dilate3D(imWrk, imWrk, se=se, edge=mamba.FILLED) m3D.logic3D(imIn, imWrk, imWrk, "inf") build3D(imIn, imWrk, grid=grid) m3D.diff3D(imIn, imWrk, imOut)
def lowerGeodesicDilate3D(imIn, imMask, imOut, n=1, se=m3D.CUBOCTAHEDRON1): """ Performs a lower geodesic dilation of 3D image 'imIn' below 'imMask'. The result is put inside 'imOut', 'n' controls the size of the dilation. 'se' specifies the type of structuring element used to perform the computation (CUBOCTAHEDRON by default). Warning! 'imMask' and 'imOut' must be different. """ m3D.logic3D(imIn, imMask, imOut, "inf") for i in range(n): m3D.dilate3D(imOut, imOut, se=se) m3D.logic3D(imMask, imOut, imOut, "inf")
def closing3D(imIn, imOut, n=1, se=m3D.CUBOCTAHEDRON1, edge=mamba.FILLED): """ Performs a closing operation on 3D image 'imIn' and puts the result in 'imOut'. 'n' controls the size of the closing and 'se' the structuring element used. The default edge is set to 'FILLED'. If 'edge' is set to 'EMPTY', the operation is slightly modified to avoid errors (non extensivity). """ imWrk = m3D.image3DMb(imIn) if edge == mamba.EMPTY: m3D.copy3D(imIn, imWrk) m3D.dilate3D(imIn, imOut, n, se=se) m3D.erode3D(imOut, imOut, n, se=se.transpose(), edge=edge) if edge == mamba.EMPTY: m3D.logic3D(imOut, imWrk, imOut, "sup")
def halfGradient3D(imIn, imOut, type="intern", n=1, se=m3D.CUBOCTAHEDRON1): """ Computes the half morphological gradient of 3D image 'imIn' ond puts the result in 'imOut'. 'type' indicates if the half gradient should be internal or external. Possible values are : "extern" : dilation(imIn) - imIn "intern" : imIn - erosion(imIn) The thickness can be controlled using parameter 'n' (1 by default). The structuring element used by the erosion or the dilation is defined by 'se'. """ imWrk = m3D.image3DMb(imIn) if type=="extern": m3D.dilate3D(imIn, imWrk, n, se=se) m3D.sub3D(imWrk, imIn, imOut) else: m3D.erode3D(imIn, imWrk, n, se=se) m3D.sub3D(imIn, imWrk, imOut)
def strongLevelling3D(imIn, imOut, n, eroFirst, grid=m3D.DEFAULT_GRID3D): """ Strong levelling of 'imIn', result in 'imOut'. 'n' defines the size of the erosion and dilation of 'imIn' in the operation. If 'eroFirst' is true, the operation starts with an erosion, it starts with a dilation otherwise. This filter is stronger (more efficient) that simpleLevelling3D. However, the order of the initial operations (erosion and dilation) matters. """ imWrk = m3D.image3DMb(imIn) se = m3D.structuringElement3D(m3D.getDirections3D(grid), grid) if eroFirst: m3D.erode3D(imIn, imWrk, n, se=se) m3D.build3D(imIn, imWrk, grid=grid) m3D.dilate3D(imIn, imOut, n, se=se) m3D.dualBuild3D(imWrk, imOut, grid=grid) else: m3D.dilate3D(imIn, imWrk, n, se=se) m3D.dualBuild3D(imIn, imWrk, grid=grid) m3D.erode3D(imIn, imOut, n, se=se) m3D.build3D(imWrk, imOut, grid=grid)