def setUp(self): element_profile = {'Ni': {'r': 0.5, 'w': 1}} describer1 = BispectrumCoefficients(cutoff=4.1, twojmax=8, element_profile=element_profile, quadratic=False, pot_fit=True) model1 = SKLModel(describer=describer1, model=LinearRegression()) model1.model.coef_ = coeff model1.model.intercept_ = intercept snap1 = SNAPotential(model=model1) self.ff_settings1 = snap1 describer2 = BispectrumCoefficients(cutoff=4.1, twojmax=8, element_profile=element_profile, quadratic=True, pot_fit=True) model2 = SKLModel(describer=describer2, model=LinearRegression()) model2.model.coef_ = coeff model2.model.intercept_ = intercept snap2 = SNAPotential(model=model2) self.ff_settings2 = snap2 self.struct = Structure.from_spacegroup('Fm-3m', Lattice.cubic(3.506), ['Ni'], [[0, 0, 0]])
def setUp(self): profile = {'Mo': {'r': 0.6, 'w': 1.}} self.describer1 = BispectrumCoefficients(cutoff=4.6, twojmax=6, element_profile=profile, quadratic=False, pot_fit=True) model1 = SKLModel(describer=self.describer1, model=LinearRegression()) self.potential1 = SNAPotential(model=model1, name='test') self.describer2 = BispectrumCoefficients(cutoff=4.6, twojmax=6, element_profile=profile, quadratic=True, pot_fit=True) model2 = SKLModel(describer=self.describer2, model=LinearRegression()) self.potential2 = SNAPotential(model=model2, name='test') self.test_pool = test_datapool self.test_structures = [] self.test_energies = [] self.test_forces = [] self.test_stresses = [] for d in self.test_pool: self.test_structures.append(d['structure']) self.test_energies.append(d['outputs']['energy']) self.test_forces.append(d['outputs']['forces']) self.test_stresses.append(d['outputs']['virial_stress']) self.test_struct = self.test_pool[-1]['structure']
def setUp(self): profile = {"Mo": {"r": 0.6, "w": 1.0}} self.describer1 = BispectrumCoefficients(rcutfac=4.6, twojmax=6, element_profile=profile, quadratic=False, pot_fit=True) model1 = SKLModel(describer=self.describer1, model=LinearRegression()) self.potential1 = SNAPotential(model=model1, name="test") self.describer2 = BispectrumCoefficients(rcutfac=4.6, twojmax=6, element_profile=profile, quadratic=True, pot_fit=True) model2 = SKLModel(describer=self.describer2, model=LinearRegression()) self.potential2 = SNAPotential(model=model2, name="test") self.test_pool = test_datapool self.test_structures = [] self.test_energies = [] self.test_forces = [] self.test_stresses = [] for d in self.test_pool: self.test_structures.append(d["structure"]) self.test_energies.append(d["outputs"]["energy"]) self.test_forces.append(d["outputs"]["forces"]) self.test_stresses.append(d["outputs"]["virial_stress"]) self.test_struct = self.test_pool[-1]["structure"]
def test_model_none(self): m = SKLModel(model=LinearRegression()) x = np.array([[1, 2], [2, 1], [1, 1]]) y = np.array([[3], [3], [2]]) m.train(x, y) np.testing.assert_almost_equal(m.model.coef_.ravel(), np.array([1.0, 1.0]))
def from_config(param_file, coeff_file, **kwargs): """ Initialize potentials with parameters file and coefficient file. Args: param_file (str): The file storing the configuration of potentials. coeff_file (str): The file storing the coefficients of potentials. Return: SNAPotential. """ with open(coeff_file) as f: coeff_lines = f.readlines() coeff_lines = [ line for line in coeff_lines if not line.startswith("#") ] element_profile = {} ne, nbc = coeff_lines[0].split() ne, nbc = int(ne), int(nbc) for n in range(ne): specie, r, w = coeff_lines[1 + n * (nbc + 1)].split() r, w = float(r), float(w) element_profile[specie] = {"r": r, "w": w} rcut_pattern = re.compile(r"rcutfac (.*?)\n", re.S) twojmax_pattern = re.compile(r"twojmax (\d*)\n", re.S) quadratic_pattern = re.compile(r"quadraticflag (.*?)(?=\n|$)", re.S) with zopen(param_file, "rt") as f: param_lines = f.read() rcut = float(rcut_pattern.findall(param_lines)[-1]) twojmax = int(twojmax_pattern.findall(param_lines)[-1]) if quadratic_pattern.findall(param_lines): quadratic = bool(int(quadratic_pattern.findall(param_lines)[-1])) else: quadratic = False describer = BispectrumCoefficients(rcutfac=rcut, twojmax=twojmax, element_profile=element_profile, quadratic=quadratic, pot_fit=True) model = SKLModel(model=LinearRegression(), describer=describer, **kwargs) coef = np.array( np.concatenate([ coeff_lines[(2 + nbc * n + n):(2 + nbc * (n + 1) + n)] for n in range(ne) ]), dtype=np.float64, ) model.model.coef_ = coef model.model.intercept_ = 0 snap = SNAPotential(model=model) return snap
def setUp(self): element_profile = {'Ni': {'r': 0.5, 'w': 1}} describer = BispectrumCoefficients(cutoff=4.1, twojmax=8, element_profile=element_profile, pot_fit=True) model = SKLModel(describer=describer, model=LinearRegression()) model.model.coef_ = coeff model.model.intercept_ = intercept snap = SNAPotential(model=model) self.ff_settings = snap
def setUp(self): element_profile = {"Ni": {"r": 0.5, "w": 1}} describer = BispectrumCoefficients(rcutfac=4.1, twojmax=8, element_profile=element_profile, pot_fit=True) model = SKLModel(describer=describer, model=LinearRegression()) model.model.coef_ = coeff model.model.intercept_ = intercept snap = SNAPotential(model=model) self.struct = Structure.from_spacegroup("Fm-3m", Lattice.cubic(3.506), ["Ni"], [[0, 0, 0]]) self.ff_settings = snap
def setUp(self): self.lm = SKLModel(model=LinearRegression()) self.test_dir = tempfile.mkdtemp()
def setUp(self): self.x_train = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T self.y_train = (self.x_train * np.sin(self.x_train)).ravel() self.gpr = SKLModel(model=GaussianProcessRegressor())