def test_stats(): rss = MaNGARSS.from_plateifu(7815, 3702, directory_path=remote_data_file()) method = ReductionAssessmentDef() # methods = available_reduction_assessments() # i = numpy.where([m['key'] == 'SNRG' for m in methods])[0] # assert len(i) == 1, 'Could not find correct reduction assessment definition.' cenwave = rss.central_wavelength(response_func=method.response) assert numpy.isclose(cenwave, 4686.2), 'Central wavelength calculation changed' sig, var, snr = rss.flux_stats(response_func=method.response) assert sig.shape == ( rss.nspec, ), 'Should be one measurement per spectrum.' assert isinstance(sig, numpy.ma.MaskedArray), 'Expected masked arrays' assert numpy.ma.amax(snr) > 15, 'S/N changed' assert numpy.ma.median(snr) < 3, 'S/N changed' # Try it with the linear rss rss = MaNGARSS.from_plateifu(7815, 3702, directory_path=remote_data_file(), log=False) _sig, _var, _snr = rss.flux_stats(response_func=method.response) # TODO: Not sure why these are not closer. assert numpy.absolute(numpy.ma.median((sig-_sig)/_sig)) < 0.01, \ 'Signal should be the same to better than 1%.' assert numpy.absolute(numpy.ma.median((var-_var)/_var)) < 0.03, \ 'Variance should be the same to better than 3%.' assert numpy.absolute(numpy.ma.median((snr-_snr)/_snr)) < 0.02, \ 'S/N should be the same to better than 2%.'
def test_wcs(): rss = MaNGARSS.from_plateifu(7815, 3702, directory_path=remote_data_file()) # Unrestricted x, y = rss.mean_sky_coordinates() methods = available_reduction_assessments() i = numpy.where([m['key'] == 'SNRG' for m in methods])[0] assert len(i) == 1, 'Could not find correct reduction assessment definition.' # Weighted by the g-band _x, _y = rss.mean_sky_coordinates(response_func=methods[i[0]]['response_func']) assert numpy.ma.amax(x-_x) - numpy.ma.amin(x-_x) > 0, 'Should be different' assert numpy.ma.amax(y-_y) - numpy.ma.amin(y-_y) > 0, 'Should be different' # Find a cluster of dithers d = numpy.ma.sqrt(numpy.square(_x) + numpy.square(_y)) srt = numpy.argsort(d) theta = numpy.arctan2(-_y, _x) indx = theta[srt[:10]] < -2 assert numpy.sum(indx) == 5, 'Should find close fiber positions' indx = srt[:10][indx] bin_indx = numpy.full(rss.nspec, -1, dtype=int) bin_indx[indx] = 0 bins, area = rss.binned_on_sky_area(bin_indx, response_func=methods[i[0]]['response_func']) assert numpy.array_equal(bins, [0]), 'Should only be one bin' try: import shapely except: # Could not import shapely for proper calcultion, so test the stupid calculation assert area[0] == numpy.sum(rss.area[bin_indx > -1]), \ 'Stupid calculation is just the sum of the fiber area' else: # Check the proper calculation assert area[0] < numpy.sum(rss.area[bin_indx > -1]), \ 'Area should be substantially smaller than the stupid calculation yields.'
def calculate_covariance_cube(plate, ifudesign, ofile, nc=1, wave=None, directory_path=None): print(' PLATE: {0}'.format(plate)) print(' IFUDESIGN: {0}'.format(ifudesign)) # Access the DRP RSS file print('Attempting to open RSS file:') rss = MaNGARSS.from_plateifu(plate, ifudesign, directory_path=directory_path) print(' FOUND: {0}'.format(rss.file_path())) if wave is not None: channel = numpy.argsort(numpy.absolute(rss.wave - wave))[0] print('Nearest wavelength channel has wavelength {0:.1f} ang.'.format(rss.wave[channel])) C = rss.covariance_matrix(channel) else: if nc >= rss.nwave or nc == 0: print('Calculating full covariance cube ...') C = rss.covariance_cube() print('... done.') elif nc == 1: channel = rss.nwave//2 print('Calculating covariance matrix at central channel: ' '{0:.1f} ang.'.format(rss.wave[channel])) C = rss.covariance_matrix(channel) else: print('Calculating covariance in {0} wavelength channels...'.format(nc)) channels = numpy.linspace(0, rss.nwave-1, num=nc, dtype=int) C = rss.covariance_cube(channels=channels) print('Writing data to {0}.'.format(ofile)) C.write(ofile, clobber=True) # Write the data
def test_read_lin(): rss = MaNGARSS.from_plateifu(7815, 3702, directory_path=remote_data_file(), log=False) assert not rss.log, 'Wavelength sampling should be linear' assert numpy.isclose(numpy.std(numpy.diff(rss.wave)), 0.), \ 'Wavelength sampling should be linear'
def test_read(): rss = MaNGARSS.from_plateifu(7815, 3702, directory_path=remote_data_file()) assert rss.log, 'Should read the log-binned version by default.' assert len(rss.shape) == 2, 'Row-stacked spectra are 2D' assert rss.shape == (rss.nspec, rss.nwave), 'Shape mismatch' assert rss.sres is not None, 'Spectral resolution data was not constructed.' assert rss.sres_ext == 'LSFPRE', 'Should default to LSFPRE extension.' assert rss.xpos.shape == rss.shape, 'On-sky coordinates are wavelength-dependent' assert numpy.all(rss.area == numpy.pi), 'Area is pi square arcsec' assert rss.area.shape == (rss.nspec, ), 'Area is wavelength-independent' assert numpy.all(numpy.absolute(numpy.asarray(rss.pointing_offset())) < 0.01), \ 'Pointing offset for this observation should be small.'
def test_copyto(): rss = MaNGARSS.from_plateifu(7815, 3702, directory_path=remote_data_file()) flux = rss.copy_to_array() assert not isinstance(flux, numpy.ma.MaskedArray), 'Should output normal array' assert flux.shape == rss.shape, 'Both should be 2D arrays.' # Apply a wavelength mask waverange = [5000, 7000] flux = rss.copy_to_array(waverange=waverange) indx = (rss.wave > waverange[0]) & (rss.wave < waverange[1]) assert flux.shape[1] == numpy.sum(indx), 'Wavelength range masking failed' # Find the spaxels with non-zero signal method = ReductionAssessmentDef() # methods = available_reduction_assessments() # i = numpy.where([m['key'] == 'SNRG' for m in methods])[0] # assert len(i) == 1, 'Could not find correct reduction assessment definition.' sig, var, snr = rss.flux_stats(response_func=method.response) indx = ((sig > 0) & numpy.invert(numpy.ma.getmaskarray(sig))).data.ravel() ngood = numpy.sum(indx) # Select the spaxels with non-zero signal flux = rss.copy_to_array(waverange=waverange, select_bins=indx) assert flux.shape[0] == ngood, 'Bin selection failed' # Get the masked array flux = rss.copy_to_masked_array() assert isinstance(flux, numpy.ma.MaskedArray), 'Should output a masked array' assert flux.shape == rss.shape, 'Both should be 2D arrays.' # Select the spaxels with non-zero signal flux = rss.copy_to_masked_array(select_bins=indx) assert flux.shape[0] == ngood, 'Bin selection failed' # Try to get the inverse variance i = rss.nspec // 2 ivar = rss.copy_to_masked_array(attr='ivar') assert ivar.shape == rss.shape, 'Bad ivar shape' assert numpy.array_equal(rss.ivar[i], ivar[i].data), 'Did not pull ivar data.' # Try to get the spectral resolution sres = rss.copy_to_masked_array(attr='sres') assert sres.shape == rss.shape, 'Bad sres shape' assert numpy.array_equal(rss.sres[i], sres[i].data), 'Did not pull sres data.'
def test_covariance(): rss = MaNGARSS.from_plateifu(7815, 3702, directory_path=remote_data_file()) # Construct a covariance matrix C = rss.covariance_matrix(1000) assert C.shape == (1764, 1764), 'Bad covariance shape' # Make it a correlation matrix and check it C.to_correlation() # Check that the variances are all unity (or close to it when it's defined) unique_var = numpy.unique(numpy.diag(C.toarray())) assert numpy.allclose(unique_var[unique_var>0], 1.), 'Bad correlation diagonal' # Try multiple channels C = rss.covariance_cube(channels=[1000,2000]) assert numpy.array_equal(C.input_indx, [1000,2000]), 'Bad matrix indices' assert C.shape == (1764, 1764, 2), 'Bad covariance shape' # Try to convert multiple channels C.to_correlation() # And reverting it C.revert_correlation()