예제 #1
0
def do_background_test(background_int, median_lo, median_hi, sigma, mask_zero,\
                        start_index=None, end_index=None):
    """
    Run the background tests

    Required inputs:
      background_int - An integrated workspace
      median_lo - Fraction of median to consider counting low
      median_hi - Fraction of median to consider counting high
      sigma     - Error criterion as a multiple of error bar
      mask_zero - If True, zero background counts will be considered a fail

    """
    logger.notice('Running background count test')

    # What shall we call the output
    lhs_names = lhs_info('names')
    if len(lhs_names) > 0:
        ws_name = lhs_names[0]
    else:
        ws_name = '__do_background_test'

    mask_bkgd, num_failures = MedianDetectorTest(
        InputWorkspace=background_int,
        StartWorkspaceIndex=start_index,
        EndWorkspaceIndex=end_index,
        SignificanceTest=sigma,
        LowThreshold=median_lo,
        HighThreshold=median_hi,
        LowOutlier=0.0,
        HighOutlier=1e100,
        ExcludeZeroesFromMedian=True)
    #TODO: Looks like hack! why it returns negative value
    return mask_bkgd, abs(num_failures)
예제 #2
0
def do_background_test(background_int, median_lo, median_hi, sigma, mask_zero, 
                        start_index=None, end_index=None):
    """
    Run the background tests

    Required inputs:
      background_int - An integrated workspace
      median_lo - Fraction of median to consider counting low
      median_hi - Fraction of median to consider counting high
      sigma     - Error criterion as a multiple of error bar
      mask_zero - If True, zero background counts will be considered a fail

    """
    logger.notice('Running background count test')

    # What shall we call the output
    lhs_names = lhs_info('names')
    if len(lhs_names) > 0:
        ws_name = lhs_names[0]
    else:
        ws_name = '__do_background_test'

    mask_bkgd, num_failures = MedianDetectorTest(InputWorkspace=background_int,
                                                 StartWorkspaceIndex=start_index, EndWorkspaceIndex=end_index,
                                                 SignificanceTest=sigma, 
                                                 LowThreshold=median_lo, HighThreshold=median_hi, 
                                                 LowOutlier=0.0, HighOutlier=1e100, ExcludeZeroesFromMedian=True)

    return mask_bkgd, num_failures
예제 #3
0
def do_bleed_test(sample_run, max_framerate, ignored_pixels):
    """Runs the CreatePSDBleedMask algorithm

    Input:
    sample_run  -  The run number of the sample
    max_framerate - The maximum allowed framerate in a tube. If None, the instrument defaults are used.
    ignored_pixels - The number of central pixels to ignore. If None, the instrument defaults are used.
    """
    logger.notice('Running PSD bleed test')
    # Load the sample run
    data_ws = common.load_run(sample_run)

    if max_framerate is None:
        max_framerate = float(data_ws.getInstrument().getNumberParameter('max-tube-framerate')[0])
    if ignored_pixels is None:
        ignored_pixels = int(data_ws.getInstrument().getNumberParameter('num-ignored-pixels')[0])
    else:
        # Make sure it is an int
        ignored_pixels = int(ignored_pixels)

    # What shall we call the output
    lhs_names = lhs_info('names')
    if len(lhs_names) > 0:
        ws_name = lhs_names[0]
    else:
        ws_name = '__do_bleed__test'

    bleed_test, num_failed = CreatePSDBleedMask(InputWorkspace=data_ws, OutputWorkspace=ws_name,
                                                MaxTubeFramerate=max_framerate,
                                                NIgnoredCentralPixels=ignored_pixels)
    return bleed_test, num_failed
예제 #4
0
def do_bleed_test(sample_run, max_framerate, ignored_pixels):
    """Runs the CreatePSDBleedMask algorithm

    Input:
    sample_run  -  The run number of the sample
    max_framerate - The maximum allowed framerate in a tube. If None, the instrument defaults are used.
    ignored_pixels - The number of central pixels to ignore. If None, the instrument defaults are used.
    """
    #NOTE: Should be deployed on non-normalized workspace only!
    logger.notice('Running PSD bleed test')
    # Load the sample run
    if __Reducer__:  #  Try to use generic loader which would work with files or workspaces alike
        sample_run = __Reducer__.get_run_descriptor(sample_run)
        data_ws = sample_run.get_workspace(
        )  # this will load data if necessary
        ws_name = data_ws.name() + '_bleed'
    else:
        # may be sample run is already a run descriptor despite __Reducer__ have not been exposed
        data_ws = sample_run.get_workspace(
        )  # this will load data if necessary
        ws_name = data_ws.name() + '_bleed'

    if max_framerate is None:  #get defaults
        max_framerate = float(data_ws.getInstrument().getNumberParameter(
            'max-tube-framerate')[0])
    if ignored_pixels is None:  #get defaults
        ignored_pixels = int(data_ws.getInstrument().getNumberParameter(
            'num-ignored-pixels')[0])
    else:
        # Make sure it is an int
        ignored_pixels = int(ignored_pixels)

    # What shall we call the output
    lhs_names = lhs_info('names')
    if len(lhs_names) > 0:
        ws_name = lhs_names[0]
    else:
        ws_name = '__do_bleed__test'
    # Check if all necessary logs present in the workspace,as nxs workspace log names are different
    #  from a raw file workspace logs.
    try:
        nFrames = data_ws.getRun().getLogData('goodfrm').value
    except RuntimeError:
        try:
            nFrames = data_ws.getRun().getLogData('good_frames').lastValue()
            AddSampleLog(Workspace=data_ws,
                         LogName='goodfrm',
                         LogText=str(int(nFrames)),
                         LogType='Number')
        except RuntimeError:
            raise RuntimeError("Bleed test fails as no appropriate 'good_frames' or 'goodfrm' log is loaded with ws: {0}\n"
                               "Disable bleed test by setting diag_bleed_test=False or add 'goodfrm' log to the workspace\n"\
                                  .format(data_ws.name()))

    bleed_test, num_failed = CreatePSDBleedMask(
        InputWorkspace=data_ws,
        OutputWorkspace=ws_name,
        MaxTubeFramerate=max_framerate,
        NIgnoredCentralPixels=ignored_pixels)
    return bleed_test, num_failed
    def iliad_wrapper(*args):
        #seq = inspect.stack()
        # output workspace name.
        try:
            _,r = funcreturns.lhs_info('both')
            out_ws_name = r[0]
        except:
            out_ws_name = None

        host = args[0]
        if len(args) > 1:
            input_file = args[1]
            if len(args) > 2:
                output_directory = args[2]
            else:
                output_directory = None
        else:
            input_file = None
            output_directory = None
        # add input file folder to data search directory if file has it
        if input_file and isinstance(input_file,str):
            data_path = os.path.dirname(input_file)
            if len(data_path) > 0:
                try:
                    config.appendDataSearchDir(str(data_path))
                    args[1] = os.path.basename(input_file)
                #pylint: disable=bare-except
                except: # if mantid is not available, this should ignore config
                    pass
        if output_directory:
            config['defaultsave.directory'] = str(output_directory)

        #pylint: disable=protected-access
        if host._run_from_web:
            #pylint: disable=protected-access
            web_vars = host._wvs.get_all_vars()
            host.reducer.prop_man.set_input_parameters(**web_vars)
        else:
            pass # we should set already set up variables using

        custom_print_function = host.set_custom_output_filename()
        if not custom_print_function is None:
            PropertyManager.save_file_name.set_custom_print(custom_print_function)
        #
        rez = reduce(*args)

        # prohibit returning workspace to web services.
        #pylint: disable=protected-access
        if host._run_from_web and not isinstance(rez,str):
            rez = ""
        else:
            if isinstance(rez, list):
              # multirep run, just return as it is
                return rez
            if not(rez is None) and out_ws_name and rez.name() != out_ws_name:
            # the function does not return None, pylint is wrong
            #pylint: disable=W1111
                rez = RenameWorkspace(InputWorkspace=rez, OutputWorkspace=out_ws_name)

        return rez
예제 #6
0
	def sqw(self,wksp_in,qbin):
		"""
		convert to SmodQw assume direct geom requires string of rebin parameters
		sqw(w1,'0,.1,12')
		"""
		
		n,r=funcreturns.lhs_info('both')
		wksp_out=r[0]
		#ei= (wksp_in.getRun().getLogData("Ei").value)
		#wksp_in=mtd[wksp_in]
		SofQW3(InputWorkspace=wksp_in,OutputWorkSpace=wksp_out,QAxisBinning=qbin,EMode="Direct")
		##comment lines were code for correcting interceting area rebin as coded in sofqw2, sofqw3 seems to work correctly
		#CloneWorkspace(InputWorkspace=wksp_in,OutputWorkspace='tmp')
		#CreateSingleValuedWorkspace(OutputWorkspace='scale',DataValue='0',ErrorValue='0')
		#Multiply(LHSWorkspace='tmp',RHSWorkspace='scale',OutputWorkspace='tmp')
		#CreateSingleValuedWorkspace(OutputWorkspace='scale2',DataValue='1',ErrorValue='0')
		#Plus(LHSWorkspace='tmp',RHSWorkspace='scale2',OutputWorkspace='tmp')
		
		#SofQW3(InputWorkspace='tmp',OutputWorkspace='tmp',QAxisBinning=qbin,EMode='Direct')
		#SetUncertainties(InputWorkSpace='tmp',OutputWorkSpace='tmp')
		#Divide(LHSWorkspace=wksp_out,RHSWorkspace='tmp',OutputWorkspace=wksp_out)
		#DeleteWorkspace('tmp')
		#DeleteWorkspace('scale')
		#DeleteWorkspace('scale2')
		return mtd[wksp_out]
    def sqw(self, wksp_in, qbin):
        """
		convert to SmodQw assume direct geom requires string of rebin parameters
		sqw(w1,'0,.1,12')
		"""

        n, r = funcreturns.lhs_info('both')
        wksp_out = r[0]
        #ei= (wksp_in.getRun().getLogData("Ei").value)
        #wksp_in=mtd[wksp_in]
        SofQW3(InputWorkspace=wksp_in,
               OutputWorkSpace=wksp_out,
               QAxisBinning=qbin,
               EMode="Direct")
        ##comment lines were code for correcting interceting area rebin as coded in sofqw2, sofqw3 seems to work correctly
        #CloneWorkspace(InputWorkspace=wksp_in,OutputWorkspace='tmp')
        #CreateSingleValuedWorkspace(OutputWorkspace='scale',DataValue='0',ErrorValue='0')
        #Multiply(LHSWorkspace='tmp',RHSWorkspace='scale',OutputWorkspace='tmp')
        #CreateSingleValuedWorkspace(OutputWorkspace='scale2',DataValue='1',ErrorValue='0')
        #Plus(LHSWorkspace='tmp',RHSWorkspace='scale2',OutputWorkspace='tmp')

        #SofQW3(InputWorkspace='tmp',OutputWorkspace='tmp',QAxisBinning=qbin,EMode='Direct')
        #SetUncertainties(InputWorkSpace='tmp',OutputWorkSpace='tmp')
        #Divide(LHSWorkspace=wksp_out,RHSWorkspace='tmp',OutputWorkspace=wksp_out)
        #DeleteWorkspace('tmp')
        #DeleteWorkspace('scale')
        #DeleteWorkspace('scale2')
        return mtd[wksp_out]
예제 #8
0
def transpose(wksp_in):
	"""
	transpose workspace
	"""
	n,r=funcreturns.lhs_info('both')
	wksp_out=r[0]
	Transpose(InputWorkspace=wksp_in,OutputWorkspace=wksp_out)
	return mtd[wksp_out]
예제 #9
0
def do_bleed_test(sample_run, max_framerate, ignored_pixels):
    """Runs the CreatePSDBleedMask algorithm

    Input:
    sample_run  -  The run number of the sample
    max_framerate - The maximum allowed framerate in a tube. If None, the instrument defaults are used.
    ignored_pixels - The number of central pixels to ignore. If None, the instrument defaults are used.
    """
    #NOTE: Should be deployed on non-normalized workspace only!
    logger.notice('Running PSD bleed test')
    # Load the sample run
    if __Reducer__: #  Try to use generic loader which would work with files or workspaces alike
        sample_run = __Reducer__.get_run_descriptor(sample_run)
        data_ws    = sample_run.get_workspace() # this will load data if necessary
        ws_name    = data_ws.name()+'_bleed'
    else:
        # may be sample run is already a run descriptor despite __Reducer__ have not been exposed
        data_ws    = sample_run.get_workspace() # this will load data if necessary
        ws_name    = data_ws.name()+'_bleed'

    if max_framerate is None: #get defaults
        max_framerate = float(data_ws.getInstrument().getNumberParameter('max-tube-framerate')[0])
    if ignored_pixels is None: #get defaults
        ignored_pixels = int(data_ws.getInstrument().getNumberParameter('num-ignored-pixels')[0])
    else:
        # Make sure it is an int
        ignored_pixels = int(ignored_pixels)

    # What shall we call the output
    lhs_names = lhs_info('names')
    if len(lhs_names) > 0:
        ws_name = lhs_names[0]
    else:
        ws_name = '__do_bleed__test'
    # Check if all necessary logs present in the workspace,as nxs workspace log names are different
    #  from a raw file workspace logs.
    try:
        nFrames= data_ws.getRun().getLogData('goodfrm').value
    except RuntimeError:
        try:
            nFrames = data_ws.getRun().getLogData('good_frames').lastValue()
            AddSampleLog(Workspace=data_ws, LogName='goodfrm', LogText=str(int(nFrames)), LogType='Number')
        except RuntimeError:
            raise RuntimeError("Bleed test fails as no appropriate 'good_frames' or 'goodfrm' log is loaded with ws: {0}\n"
                               "Disable bleed test by setting diag_bleed_test=False or add 'goodfrm' log to the workspace\n"\
                                  .format(data_ws.name()))


    bleed_test, num_failed = CreatePSDBleedMask(InputWorkspace=data_ws, OutputWorkspace=ws_name,
                                                MaxTubeFramerate=max_framerate,
                                                NIgnoredCentralPixels=ignored_pixels)
    return bleed_test, num_failed
예제 #10
0
	def sqwfast(self,wksp_in,qbin):
		"""
		convert to SmodQw assume direct geom requires string of rebin parameters
		sqw(w1,'0,.1,12')
		"""
		try:
			n,r=funcreturns.lhs_info('both')
			wksp_out=r[0]
			#ei= (wksp_in.getRun().getLogData("Ei").value)
			SofQW(wksp_in,OutputWorkspace=wksp_out,QAxisBinning=qbin,EMode="Direct",EFixed=str(ei))
			return mtd[wksp_out]
		except:
			print 'no output workpsace defined'
예제 #11
0
    def iliad_wrapper(*args):
        #seq = inspect.stack()
        # output workspace name.
        try:
            n,r = funcreturns.lhs_info('both')
            out_ws_name = r[0]
        except:
            out_ws_name = None

        host = args[0]
        if len(args)>1:
            input_file = args[1]
            if len(args)>2:
                output_directory = args[2]
            else:
                output_directory =None
        else:
            input_file=None
            output_directory=None
        # add input file folder to data search directory if file has it
        if input_file and isinstance(input_file,str):
           data_path = os.path.dirname(input_file)
           if len(data_path)>0:
              try:               
                 config.appendDataSearchDir(str(data_path))
                 args[1] = os.path.basename(input_file)
              except: # if mantid is not available, this should ignore config
                 pass
        if output_directory:
           config['defaultsave.directory'] = output_directory

        if host._run_from_web:
            web_vars = dict(host._wvs.standard_vars.items()+host._wvs.advanced_vars.items())
            host.reducer.prop_man.set_input_parameters(**web_vars)
        else:
            pass # we should set already set up variables using 

 
        rez = reduce(*args)

        # prohibit returning workspace to web services. 
        if host._run_from_web and not isinstance(rez,str):
            rez=""
        else:         
          if isinstance(rez,list):
              # multirep run, just return as it is
              return rez
          if out_ws_name and rez.name() != out_ws_name :
              rez=RenameWorkspace(InputWorkspace=rez,OutputWorkspace=out_ws_name)
             
        return rez
예제 #12
0
def do_second_white_test(white_counts, comp_white_counts, tiny, large, out_lo, out_hi,
                         median_lo, median_hi, sigma, variation,
                         start_index=None, end_index=None):
    """
    Run additional tests comparing given another white beam count workspace, comparing
    to the first

    Required inputs:

      white_counts  - A workspace containing the integrated counts from a
                      white beam vanadium run
      comp_white_counts  - A workspace containing the integrated counts from a
                      white beam vanadium run
      tiny          - Minimum threshold for acceptance
      large         - Maximum threshold for acceptance
      median_lo     - Fraction of median to consider counting low
      median_hi     - Fraction of median to consider counting high
      signif          - Counts within this number of multiples of the
                      standard dev will be kept
      variation     - Defines a range within which the ratio of the two counts is
                      allowed to fall in terms of the number of medians
    """
    logger.notice('Running second white beam test')

    # What shall we call the output
    lhs_names = lhs_info('names')
    if len(lhs_names) > 0:
        ws_name = lhs_names[0]
    else:
        ws_name = '__do_second_white_test'

    # Make sure we are a MatrixWorkspace
    white_counts = ConvertToMatrixWorkspace(InputWorkspace=white_counts,OutputWorkspace=white_counts)
    comp_white_counts = ConvertToMatrixWorkspace(InputWorkspace=comp_white_counts,OutputWorkspace=comp_white_counts)

    # Do the white beam test
    __second_white_tests, failed = do_white_test(comp_white_counts, tiny, large, median_lo, median_hi,
                                                 sigma, start_index, end_index)
    # and now compare it with the first
    effic_var, num_failed = DetectorEfficiencyVariation(WhiteBeamBase=white_counts, WhiteBeamCompare=comp_white_counts,
                                                        OutputWorkspace=ws_name,
                                                        Variation=variation, StartWorkspaceIndex=start_index,
                                                        EndWorkspaceIndex=end_index)

    DeleteWorkspace(Workspace=str(__second_white_tests))
    # Mask those that failed
    maskWS = effic_var
    MaskDetectors(Workspace=white_counts, MaskedWorkspace=maskWS)
    MaskDetectors(Workspace=comp_white_counts, MaskedWorkspace=maskWS)

    return maskWS, num_failed
예제 #13
0
def do_second_white_test(white_counts, comp_white_counts, tiny, large, out_lo, out_hi, 
                         median_lo, median_hi, sigma, variation,
                         start_index=None, end_index=None):
    """
    Run additional tests comparing given another white beam count workspace, comparing
    to the first

    Required inputs:
    
      white_counts  - A workspace containing the integrated counts from a
                      white beam vanadium run
      comp_white_counts  - A workspace containing the integrated counts from a
                      white beam vanadium run
      tiny          - Minimum threshold for acceptance
      large         - Maximum threshold for acceptance
      median_lo     - Fraction of median to consider counting low
      median_hi     - Fraction of median to consider counting high
      signif          - Counts within this number of multiples of the 
                      standard dev will be kept
      variation     - Defines a range within which the ratio of the two counts is
                      allowed to fall in terms of the number of medians
    """ 
    logger.notice('Running second white beam test')

    # What shall we call the output
    lhs_names = lhs_info('names')
    if len(lhs_names) > 0:
        ws_name = lhs_names[0]
    else:
        ws_name = '__do_second_white_test'
    
    # Make sure we are a MatrixWorkspace
    white_counts = ConvertToMatrixWorkspace(InputWorkspace=white_counts,OutputWorkspace=white_counts)
    comp_white_counts = ConvertToMatrixWorkspace(InputWorkspace=comp_white_counts,OutputWorkspace=comp_white_counts)
    
    # Do the white beam test
    __second_white_tests, failed = do_white_test(comp_white_counts, tiny, large, median_lo, median_hi, 
                                                 sigma, start_index, end_index)
    # and now compare it with the first
    effic_var, num_failed = DetectorEfficiencyVariation(WhiteBeamBase=white_counts, WhiteBeamCompare=comp_white_counts,
                                                        OutputWorkspace=ws_name,
                                                        Variation=variation, StartWorkspaceIndex=start_index,
                                                        EndWorkspaceIndex=end_index)

    DeleteWorkspace(Workspace=str(__second_white_tests))
    # Mask those that failed
    maskWS = effic_var
    MaskDetectors(Workspace=white_counts, MaskedWorkspace=maskWS)
    MaskDetectors(Workspace=comp_white_counts, MaskedWorkspace=maskWS)
  
    return maskWS, num_failed
예제 #14
0
def sqw(wksp_in,qbin):
	"""
	convert to SmodQw assume direct geom requires string of rebin parameters
	sqw(w1,'0,.1,12')
	"""
	try:
		n,r=funcreturns.lhs_info('both')
		wksp_out=r[0]
		ei= (wksp_in.getRun().getLogData("Ei").value)

		SofQW2(wksp_in, OutputWorkspace=wksp_out,QAxisBinning=qbin,EMode="Direct",EFixed=str(ei))
		Transpose(InputWorkspace=wksp_out,OutputWorkspace=wksp_out)
		return mtd[wksp_out]
	except:
		print 'no output workpsace defined'
예제 #15
0
def calculate_resolution(input_data, mass, index=0):
    """
        Run the VesuvioResolution function to produce a workspace
        with the value of the Vesuvio resolution.

        @param input_data The original TOF data
        @param mass The mass defining the recoil peak in AMU
        @param index An optional index to specify the spectrum to use
    """
    from mantid.api import AlgorithmManager, AnalysisDataService
    from mantid.kernel.funcreturns import lhs_info

    # Grab the name of the variable that this function call is assigned to
    try:
        output_name = lhs_info("names")[0]
    except IndexError:
        # No variable specified
        name_stem = str(input_data)
        output_name = name_stem + "_res" + str(index)

    function = "name=VesuvioResolution, Mass=%f" % mass

    # execute the resolution function using fit.
    # functions can't currently be executed as stand alone objects,
    # so for now we will run fit with zero iterations to achieve the same result.
    fit = mantid.api.AlgorithmManager.createUnmanaged('Fit')
    fit.initialize()
    fit.setChild(True)
    fit.setLogging(False)
    mantid.simpleapi._set_properties(fit, function, input_data, MaxIterations=0,
                                     CreateOutput=True, Output=output_name,WorkspaceIndex=index)
    fit.execute()
    values_ws = fit.getProperty("OutputWorkspace").value

    # extract just the function values
    extract = mantid.api.AlgorithmManager.createUnmanaged('ExtractSingleSpectrum')
    extract.initialize()
    extract.setChild(True)
    extract.setLogging(False)
    extract.setProperty("InputWorkspace", values_ws)
    extract.setProperty("OutputWorkspace", "__unused_for_child")
    extract.setProperty("WorkspaceIndex", 1)
    extract.execute()
    calculated = extract.getProperty("OutputWorkspace").value
    AnalysisDataService.addOrReplace(output_name, calculated)

    return calculated
예제 #16
0
	def QCut(self,Emin,Emax,Qmin,delQ,Qmax,**kwargs):
		intmin=Emin
		intmax=Emax
		cutmin=Qmin
		delcut=delQ
		cutmax=Qmax
		try:
			n,r=funcreturns.lhs_info('both')
			name=r[0]
			if kwargs.has_key('shoelace'):
				if kwargs.has_key('over'):
					if kwargs.has_key('Handle'):
						fighandle=kwargs.get_key('Handle')
						self.cut(self.data,intmin,intmax,cutmin,delcut,cutmax,along='q',over=True,cutName=name,shoelace=True,Handle=fighandle)
					else:
						self.cut(self.data,intmin,intmax,cutmin,delcut,cutmax,along='q',over=True,cutName=name,shoelace=True)
				else:
					self.cut(self.data,intmin,intmax,cutmin,delcut,cutmax,along='q',cutName=name,shoelace=True)
			else:
				if kwargs.has_key('over'):
					if kwargs.has_key('Handle'):
						fighandle=kwargs.get('Handle')
						self.cut(self.data,intmin,intmax,cutmin,delcut,cutmax,along='q',over=True,cutName=name,Handle=fighandle)
					else:
						self.cut(self.data,intmin,intmax,cutmin,delcut,cutmax,along='q',over=True,cutName=name)
				else:
					self.cut(self.data,intmin,intmax,cutmin,delcut,cutmax,along='q',cutName=name)
		except:		
			if kwargs.has_key('shoelace'):
				if kwargs.has_key('over'):
					if kwargs.has_key('Handle'):
						fighandle=kwargs.get('Handle')
						self.cut(self.data,intmin,intmax,cutmin,delcut,cutmax,along='q',over=True,shoelace=True,Handle=fighandle)
					else:
						self.cut(self.data,intmin,intmax,cutmin,delcut,cutmax,along='q',over=True,shoelace=True)
				else:
					self.cut(self.data,intmin,intmax,cutmin,delcut,cutmax,along='q',shoelace=True)
			else:
				if kwargs.has_key('over'):
					if kwargs.has_key('Handle'):
						fighandle=kwargs.get('Handle')
						self.cut(self.data,intmin,intmax,cutmin,delcut,cutmax,along='q',over=True,Handle=fighandle)
					else:
						self.cut(self.data,intmin,intmax,cutmin,delcut,cutmax,along='q',over=True)
				else:
					self.cut(self.data,intmin,intmax,cutmin,delcut,cutmax,along='q')
예제 #17
0
	def cutMatplotlib(self,direction,intMin,intMax,minX,delX,maxX,**kwargs):
		
		#keywords, wkspout= name of output
		#		   wkspIn= input data
		
		#deal with the call type and where to get the output workspace name from
		if kwargs.has_key('wkspout'):
			cut_name=kwargs.get('wkspout')
		else:
			n,r=funcreturns.lhs_info('both')
			cut_name=r[0]
		
		if direction == 'x':
			if kwargs.has_key('wkspIn'):
				wkspinName=kwargs.get('wkspIn')	
				Rebin2D(InputWorkspace=wkspinName,OutputWorkspace=cut_name,Axis1Binning=str(minX)+','+str(delX)+','+str(maxX),Axis2Binning=str(intMin)+','+str(intMax-intMin)+','+str(intMax),UseFractionalArea='1' )
				
			else:
				Rebin2D(InputWorkspace=self.data,OutputWorkspace=cut_name,Axis1Binning=str(minX)+','+str(delX)+','+str(maxX),Axis2Binning=str(intMin)+','+str(intMax-intMin)+','+str(intMax),UseFractionalArea='1' )
		
		if direction == 'y':
			if kwargs.has_key('wkspin'):
				wkspinName=kwargs.get('wkspin')	
				Rebin2D(InputWorkspace=wkspinName,OutputWorkspace=cut_name,Axis1Binning=str(intMin)+','+str(intMax-intMin)+','+str(intMax),Axis2Binning=str(minX)+','+str(delX)+','+str(maxX),UseFractionalArea='1')
				Transpose(InputWorkspace=cut_name,OutputWorkspace=cut_name)
			else:
				Rebin2D(InputWorkspace=self.data,OutputWorkspace=cut_name,Axis1Binning=str(intMin)+','+str(intMax-intMin)+','+str(intMax),Axis2Binning=str(minX)+','+str(delX)+','+str(maxX),UseFractionalArea='1')
				Transpose(InputWorkspace=cut_name,OutputWorkspace=cut_name)
		
		ReplaceSpecialValues(InputWorkspace=cut_name,OutputWorkspace=cut_name,NaNValue='0',InfinityValue='0')
		
		
		cutDataWorkSpace=mtd[cut_name]
		evals=cutDataWorkSpace.extractE()
		xvals=cutDataWorkSpace.extractX()
		yvals=cutDataWorkSpace.extractY()

		NewXvals=( xvals + numpy.roll(xvals,-1) )/2 # calculate the bin center 
		NewXvals = numpy.delete(NewXvals,-1) # remove the last element which is junk
		yvals=yvals[0]
		evals=evals[0]
		
		output=[NewXvals,yvals,evals]
		return output
예제 #18
0
def do_bleed_test(sample_run, max_framerate, ignored_pixels):
    """Runs the CreatePSDBleedMask algorithm

    Input:
    sample_run  -  The run number of the sample
    max_framerate - The maximum allowed framerate in a tube. If None, the instrument defaults are used.
    ignored_pixels - The number of central pixels to ignore. If None, the instrument defaults are used.
    """
    # NOTE: it was deployed on loaded workspace and now it works on normalized workspace. Is this acceptable?
    logger.notice('Running PSD bleed test')
    # Load the sample run
    if __Reducer__: #  Try to use generic loader which would work with files or workspaces alike
        sample_run = __Reducer__.get_run_descriptor(sample_run)
        data_ws    = sample_run.get_workspace() # this will load data if necessary 
        ws_name    = sample_run.get_ws_name()+'_bleed'
    else: 
        # may be sample run is already a run descriptor despite __Reducer__ have not been exposed
        data_ws    = sample_run.get_workspace() # this will load data if necessary 
        ws_name    = sample_run.get_ws_name()+'_bleed'

    if max_framerate is None:
        max_framerate = float(data_ws.getInstrument().getNumberParameter('max-tube-framerate')[0])
    if ignored_pixels is None:
        ignored_pixels = int(data_ws.getInstrument().getNumberParameter('num-ignored-pixels')[0])
    else:
        # Make sure it is an int
        ignored_pixels = int(ignored_pixels)

    # What shall we call the output
    lhs_names = lhs_info('names')
    if len(lhs_names) > 0:
        ws_name = lhs_names[0]
    else:
        ws_name = '__do_bleed__test'

    bleed_test, num_failed = CreatePSDBleedMask(InputWorkspace=data_ws, OutputWorkspace=ws_name,
                                                MaxTubeFramerate=max_framerate,
                                                NIgnoredCentralPixels=ignored_pixels)
    return bleed_test, num_failed
예제 #19
0
    def diagnose(self, white, **kwargs):
        """
            Run diagnostics on the provided workspaces.
            
            This method does some additional processing before moving on to the diagnostics:
              1) Computes the white beam integrals, converting to energy
              2) Computes the background integral using the instrument defined range
              3) Computes a total count from the sample
              
            These inputs are passed to the diagnostics functions
    
            Required inputs:
            
              white  - A workspace, run number or filepath of a white beam run. A workspace is assumed to
                       have simple been loaded and nothing else.
            
            Optional inputs:
              sample - A workspace, run number or filepath of a sample run. A workspace is assumed to
                       have simple been loaded and nothing else. (default = None)
              second_white - If provided an additional set of tests is performed on this. (default = None)
              hard_mask  - A file specifying those spectra that should be masked without testing (default=None)
              tiny        - Minimum threshold for acceptance (default = 1e-10)
              huge        - Maximum threshold for acceptance (default = 1e10)
              bkgd_range - A list of two numbers indicating the background range (default=instrument defaults)
              van_out_lo  - Lower bound defining outliers as fraction of median value (default = 0.01)
              van_out_hi  - Upper bound defining outliers as fraction of median value (default = 100.)
              van_lo      - Fraction of median to consider counting low for the white beam diag (default = 0.1)
              van_hi      - Fraction of median to consider counting high for the white beam diag (default = 1.5)
              van_sig  - Error criterion as a multiple of error bar i.e. to fail the test, the magnitude of the\n"
                          "difference with respect to the median value must also exceed this number of error bars (default=0.0)
              samp_zero    - If true then zeroes in the vanadium data will count as failed (default = True)
              samp_lo      - Fraction of median to consider counting low for the white beam diag (default = 0)
              samp_hi      - Fraction of median to consider counting high for the white beam diag (default = 2.0)
              samp_sig  - Error criterion as a multiple of error bar i.e. to fail the test, the magnitude of the\n"
                          "difference with respect to the median value must also exceed this number of error bars (default=3.3)
              variation  - The number of medians the ratio of the first/second white beam can deviate from
                           the average by (default=1.1)
              bleed_test - If true then the CreatePSDBleedMask algorithm is run
              bleed_maxrate - If the bleed test is on then this is the maximum framerate allowed in a tube
              bleed_pixels - If the bleed test is on then this is the number of pixels ignored within the
                             bleed test diagnostic
              print_results - If True then the results are printed to the screen
        """
        lhs_names = funcreturns.lhs_info('names')
        if len(lhs_names) > 0:
            var_name = lhs_names[0]
        else:
            var_name = "diag_mask"

        # Check for any keywords that have not been supplied and put in the defaults
        for par in self.diag_params:
            arg = par.lstrip('diag_')
            if arg not in kwargs:
                kwargs[arg] = getattr(self, par)
                
        # Get the white beam vanadium integrals
        whiteintegrals = self.do_white(white, None, None,None) # No grouping yet
        if 'second_white' in kwargs:
            second_white = kwargs['second_white']
            if second_white is None:
                del kwargs['second_white']
            else:
                other_whiteintegrals = self.do_white(second_white, None, None,None) # No grouping yet
                kwargs['second_white'] = other_whiteintegrals

        # Get the background/total counts from the sample if present
        if 'sample' in kwargs:
            sample = kwargs['sample']
            del kwargs['sample']
            # If the bleed test is requested then we need to pass in the sample_run as well
            if kwargs.get('bleed_test', False):
                kwargs['sample_run'] = sample
            
            # Set up the background integrals
            result_ws = common.load_runs(sample)
            result_ws = self.normalise(result_ws, result_ws.name(), self.normalise_method)
            if 'bkgd_range' in kwargs:
                bkgd_range = kwargs['bkgd_range']
                del kwargs['bkgd_range']
            else:
                bkgd_range = self.background_range
            background_int = Integration(result_ws,
                                         RangeLower=bkgd_range[0],RangeUpper=bkgd_range[1],
                                         IncludePartialBins=True)
            total_counts = Integration(result_ws, IncludePartialBins=True)
            background_int = ConvertUnits(background_int, "Energy", AlignBins=0)
            background_int *= 1.7016e8
            diagnostics.normalise_background(background_int, whiteintegrals, kwargs.get('second_white',None))
            kwargs['background_int'] = background_int
            kwargs['sample_counts'] = total_counts
        
        # If we have a hard_mask, check the instrument name is defined
        if 'hard_mask' in kwargs:
            if 'instrument_name' not in kwargs:
                kwargs['instrument_name'] = self.instr_name
        
        # Check how we should run diag
        if self.diag_spectra is None:
            # Do the whole lot at once
            diagnostics.diagnose(whiteintegrals, **kwargs)
        else:
            banks = self.diag_spectra.split(";")
            bank_spectra = []
            for b in banks:
                token = b.split(",")  # b = "(,)"
                if len(token) != 2: 
                    raise ValueError("Invalid bank spectra specification in diag %s" % self.diag_spectra)
                start = int(token[0].lstrip('('))
                end = int(token[1].rstrip(')'))
                bank_spectra.append((start,end))
            
            for index, bank in enumerate(bank_spectra):
                kwargs['start_index'] = bank[0] - 1
                kwargs['end_index'] = bank[1] - 1
                diagnostics.diagnose(whiteintegrals, **kwargs)
                
        if 'sample_counts' in kwargs:
            DeleteWorkspace(Workspace='background_int')
            DeleteWorkspace(Workspace='total_counts')
        if 'second_white' in kwargs:
            DeleteWorkspace(Workspace=kwargs['second_white'])
        # Return a mask workspace
        diag_mask, det_ids = ExtractMask(InputWorkspace=whiteintegrals,OutputWorkspace=var_name)
        DeleteWorkspace(Workspace=whiteintegrals)
        self.spectra_masks = diag_mask
        return diag_mask
예제 #20
0
def arb_units(wb_run,sample_run,ei_guess,rebin,map_file='default',monovan_run=None,**kwargs):
    """ One step conversion of run into workspace containing information about energy transfer
    Usage:
    >>arb_units(wb_run,sample_run,ei_guess,rebin)

    >>arb_units(wb_run,sample_run,ei_guess,rebin,**arguments)

    >>arb_units(wb_run,sample_run,ei_guess,rebin,mapfile,**arguments)

    >>arb_units(wb_run   Whitebeam run number or file name or workspace
                sample_run  sample run number or file name or workspace
                ei_guess    Ei guess
                rebin       Rebin parameters
                mapfile     Mapfile -- if absent/'default' the defaults from IDF are used
                monovan_run If present will do the absolute units normalization. Number of additional parameters
                            specified in **kwargs is usually requested for this. If they are absent, program uses defaults,
                            but the defaults (e.g. sample_mass or sample_rmm ) are usually incorrect for a particular run.
                arguments   The dictionary containing additional keyword arguments.
                            The list of allowed additional arguments is defined in InstrName_Parameters.xml file, located in
                            MantidPlot->View->Preferences->Mantid->Directories->Parameter Definitions

    with run numbers as input:
    >>dgreduce.arb_units(1000,10001,80,[-10,.1,70])  # will run on default instrument

    >>dgreduce.arb_units(1000,10001,80,[-10,.1,70],'mari_res', additional keywords as required)

    >>dgreduce.arb_units(1000,10001,80,'-10,.1,70','mari_res',fixei=True)

    A detector calibration file must be specified if running the reduction with workspaces as input
    namely:
    >>w2=iliad("wb_wksp","run_wksp",ei,rebin_params,mapfile,det_cal_file=cal_file
               ,diag_remove_zero=False,norm_method='current')


    type help() for the list of all available keywords. All availible keywords are provided in InstName_Parameters.xml file


    Some samples are:
    norm_method =[monitor-1],[monitor-2][Current]
    background  =False , True
    fixei       =False , True
    save_format =['.spe'],['.nxspe'],'none'
    detector_van_range          =[20,40] in mev

    bkgd_range  =[15000,19000]  :integration range for background tests

    second_white     - If provided an additional set of tests is performed on this. (default = None)
    hardmaskPlus     - A file specifying those spectra that should be masked without testing (default=None)
    tiny             - Minimum threshold for acceptance (default = 1e-10)
    large            - Maximum threshold for acceptance (default = 1e10)
    bkgd_range       - A list of two numbers indicating the background range (default=instrument defaults)
    diag_van_median_rate_limit_lo      - Lower bound defining outliers as fraction of median value (default = 0.01)
    diag_van_median_rate_limit_hi      - Upper bound defining outliers as fraction of median value (default = 100.)
    diag_van_median_sigma_lo           - Fraction of median to consider counting low for the white beam diag (default = 0.1)
    diag_van_median_sigma_hi           - Fraction of median to consider counting high for the white beam diag (default = 1.5)
    diag_van_sig  - Error criterion as a multiple of error bar i.e. to fail the test, the magnitude of the
                    difference with respect to the median value must also exceed this number of error bars (default=0.0)
    diag_remove_zero                - If true then zeroes in the vanadium data will count as failed (default = True)
    diag_samp_samp_median_sigma_lo  - Fraction of median to consider counting low for the white beam diag (default = 0)
    diag_samp_samp_median_sigma_hi  - Fraction of median to consider counting high for the white beam diag (default = 2.0)
    diag_samp_sig                   - Error criterion as a multiple of error bar i.e. to fail the test, the magnitude of the"
                                      difference with respect to the median value must also exceed this number of error bars (default=3.3)
    variation       -The number of medians the ratio of the first/second white beam can deviate from
                     the average by (default=1.1)
    bleed_test      - If true then the CreatePSDBleedMask algorithm is run
    bleed_maxrate   - If the bleed test is on then this is the maximum framerate allowed in a tube
    bleed_pixels    - If the bleed test is on then this is the number of pixels ignored within the
                       bleed test diagnostic
    print_results - If True then the results are printed to the screen

    diag_remove_zero =True, False (default):Diag zero counts in background range
    bleed=True , turn bleed correction on and off on by default for Merlin and LET

    sum =True,False(default) , sum multiple files

    det_cal_file= a valid detector block file and path or a raw file. Setting this
                  will use the detector calibraion from the specified file NOT the
                  input raw file
    mask_run = RunNumber to use for diag instead of the input run number

    one2one =True, False :Reduction will not use a mapping file

    hardmaskPlus=Filename :load a hardmarkfile and apply together with diag mask

    hardmaskOnly=Filename :load a hardmask and use as only mask

    """
    global Reducer
    if Reducer is None or Reducer.instrument is None:
        raise ValueError("instrument has not been defined, call setup(instrument_name) first.")
# --------------------------------------------------------------------------------------------------------
#    Deal with mandatory parameters for this and may be some top level procedures
# --------------------------------------------------------------------------------------------------------
    Reducer.log("****************************************************************");
    if isinstance(sample_run,api.Workspace) or (isinstance(sample_run,str) and sample_run in mtd):
        Reducer.log('*** DGreduce run for: {0:>20} :  Workspace name: {1:<20} '.format(Reducer.instr_name,str(sample_run)))
    else:
        Reducer.log('*** DGreduce run for: {0:>20} :  Run number/s : {1:<20} '.format(Reducer.instr_name,str(sample_run)))

    try:
        n,r=funcreturns.lhs_info('both')
        wksp_out=r[0]
    except:
        if sample_run == 0:
            #deal with the current run being parsed as 0 rather than 00000
            sample_run='00000'
        wksp_out=Reducer.instr_name+str(sample_run)+'.spe'
        if kwargs.has_key('sum') and kwargs.get('sum')==True:
            wksp_out=inst_name+str(sample_run[0])+'sum'+'.spe'

    start_time=time.time()

    if sample_run=='00000' and mtd.doesExist(inst_name+'00000.raw')==True:
        Reducer.log('Deleting previous instance of temp data')
        DeleteWorkspace(Workspace=inst_name+'00000.raw')


    # we may want to run absolute units normalization and this function has been called with monovan run or helper procedure
    abs_units_defaults_check = False
    if monovan_run != None :
       # check if mono-vanadium is provided as multiple files list or just put in brackets occasionally
        Reducer.log("****************************************************************");
        Reducer.log('*** Output will be in absolute units of mb/str/mev/fu')
        if isinstance(monovan_run,list):
                if len(monovan_run)>1:
                    raise IOError(' Can currently work only with single monovan file but list supplied')
                else:
                    monovan_run = monovan_run[0];
        abs_units_defaults_check =True
        if '_defaults_have_changed' in kwargs:
            del kwargs['_defaults_have_changed']
            abs_units_defaults_check =False
    if "wb_for_monovanadium" in kwargs :
         wb_for_monovanadium = kwargs['wb_for_monovanadium']
         del kwargs['wb_for_monovanadium']
    else:
         wb_for_monovanadium = wb_run;



    if isinstance(ei_guess,str):
        ei_guess = float(ei_guess)

    # set rebinning range
    Reducer.energy_bins = rebin
    Reducer.incident_energy = ei_guess;
    if Reducer.energy_bins[2] > ei_guess:
        Reducer.log('Error: rebin max rebin range {0:f} exceeds incident energy {1:f}'.format(Reducer.energy_bins[2],ei_guess),'Error')
        return

    # Process old legacy parameters which are easy to re-define in dgreduce rather then transfer through Mantid
    program_args = process_legacy_parameters(**kwargs)

    # set non-default reducers parameters and check if all optional keys provided as parameters are acceptable and have been defined in IDF
    changed_Keys=Reducer.set_input_parameters(**program_args);

    # inform user about changed parameters

    Reducer.log("*** Provisional Incident energy: {0:>12.3f} mEv".format(ei_guess))
    Reducer.log("****************************************************************");
    for key in changed_Keys:
        val = getattr(Reducer,key);
        Reducer.log("  Value of : {0:<25} is set to : {1:<20} ".format(key,val))


    save_dir = config.getString('defaultsave.directory')
    Reducer.log("****************************************************************");
    if monovan_run != None and not('van_mass' in changed_Keys or 'vanadium-mass' in changed_Keys) :
         Reducer.log("*** Monochromatic vanadium mass used : {0} ".format(Reducer.van_mass))
    Reducer.log("*** By default results are saved into: {0}".format(save_dir));
    Reducer.log("****************************************************************");
    #do we run absolute units normalization and need to warn users if the parameters needed for that have not changed from defaults
    if abs_units_defaults_check :
        Reducer.check_abs_norm_defaults_changed(changed_Keys);

    #process complex parameters


    # map file given in parameters overrides default map file
    if map_file != 'default' :
        Reducer.map_file = map_file
    # defaults can be None too, but can be a file
    if  Reducer.map_file == None:
        Reducer.log('one2one map selected')


    if  Reducer.det_cal_file != None :
        if isinstance(Reducer.det_cal_file,str) and not Reducer.det_cal_file in mtd : # it is a file
            Reducer.log('Setting detector calibration file to '+Reducer.det_cal_file)
        else:
           Reducer.log('Setting detector calibration to {0}, which is probably a workspace '.format(str(Reducer.det_cal_file)))
    else:
        Reducer.log('Setting detector calibration to detector block info from '+str(sample_run))

    # check if reducer can find all non-run files necessary for the reduction before starting long run.
    Reducer.check_necessary_files(monovan_run);

    print 'Output will be normalized to', Reducer.normalise_method
    if (numpy.size(sample_run)) > 1 and Reducer.sum_runs:
        #this sums the runs together before passing the summed file to the rest of the reduction
        #this circumvents the inbuilt method of summing which fails to sum the files for diag

        #the D.E.C. tries to be too clever so we have to fool it into thinking the raw file is already exists as a workpsace
        sumfilename=Reducer.instr_name+str(sample_run[0])+'.raw'
        sample_run =sum_files(Reducer.instr_name,sumfilename, sample_run)
        common.apply_calibration(Reducer.instr_name,sample_run,Reducer.det_cal_file)

        #sample_run = RenameWorkspace(InputWorkspace=accum,OutputWorkspace=inst_name+str(sample_run[0])+'.raw')


    if Reducer.mask_run == None :
        mask_run=sample_run

    masking = None;
    masks_done=False
    if not Reducer.run_diagnostics:
       header="Diagnostics including hard masking is skipped "
       masks_done = True;
    if Reducer.save_and_reuse_masks :
        raise NotImplementedError("Save and reuse masks option is not yet implemented")
        mask_file_name = common.create_resultname(str(mask_run),Reducer.instr_name,'_masks.xml')
        mask_full_file = FileFinder.getFullPath(mask_file_name)
        if len(mask_full_file) > 0 :
            masking = LoadMask(Instrument=Reducer.instr_name,InputFile=mask_full_file,OutputWorkspace=mask_file_name)
            #Reducer.hard_mask_file = mask_full_file;
            #Reducer.use_hard_mask_only = True
            masks_done=True
            header="Masking fully skipped and processed {0} spectra and  {1} bad spectra "
        else:
            pass
#-------------------------------------------------------------------------------------------------------------------------------------------------------
#  Here we give control to the Reducer
# --------------------------------------------------------------------------------------------------------
     # diag the sample and detector vanadium. It will deal with hard mask only if it is set that way
    if not   masks_done:
        print '########### Run diagnose for sample run ##############################'
        masking = Reducer.diagnose(wb_run,sample = mask_run,
                                    second_white = None,print_results=True)
        header = "Diag Processed workspace with {0:d} spectra and masked {1:d} bad spectra"


   # Calculate absolute units:
        if monovan_run != None :
            if Reducer.mono_correction_factor == None :
                if Reducer.use_sam_msk_on_monovan == True:
                    Reducer.log('  Applying sample run mask to mono van')
                else:
                    if not Reducer.use_hard_mask_only : # in this case the masking2 is different but points to the same workspace Should be better soulution for that.
                        print '########### Run diagnose for monochromatic vanadium run ##############'
                        masking2 = Reducer.diagnose(wb_for_monovanadium,sample=monovan_run,
                                         second_white = None,rint_results=True)
                        masking +=  masking2
                        DeleteWorkspace(masking2)


            else: # if Reducer.mono_correction_factor != None :
                pass

    # save mask if it does not exist and has been already loaded
    if Reducer.save_and_reuse_masks and not masks_done:
        SaveMask(InputWorkspace=masking,OutputFile = mask_file_name,GroupedDetectors=True)

    # Very important statement propagating masks for further usage in convert_to_energy
    Reducer.spectra_masks=masking
    # estimate and report the number of failing detectors
    failed_sp_list,nSpectra = get_failed_spectra_list_from_masks(masking)
    nMaskedSpectra = len(failed_sp_list)
    # this tells turkey in case of hard mask only but everything else semens work fine
    print header.format(nSpectra,nMaskedSpectra)
     #Run the conversion first on the sample
    deltaE_wkspace_sample = Reducer.convert_to_energy(sample_run, ei_guess, wb_run)


    # calculate absolute units integral and apply it to the workspace
    if monovan_run != None or Reducer.mono_correction_factor != None :
        deltaE_wkspace_sample = apply_absolute_normalization(Reducer,deltaE_wkspace_sample,monovan_run,ei_guess,wb_run)
        # Hack for multirep
        #if isinstance(monovan_run,int):
        #    filename = common.find_file(monovan_run)
        #    output_name = common.create_dataname(filename);
       #     DeleteWorkspace(output_name);


    results_name = deltaE_wkspace_sample.name();
    if results_name != wksp_out:
       RenameWorkspace(InputWorkspace=results_name,OutputWorkspace=wksp_out)


    ei= (deltaE_wkspace_sample.getRun().getLogData("Ei").value)
    print 'Incident energy found for sample run: ',ei,' meV'

    end_time=time.time()
    print 'Elapsed time =',end_time-start_time, 's'

    if mtd.doesExist('_wksp.spe-white')==True:
        DeleteWorkspace(Workspace='_wksp.spe-white')
    # Hack for multirep mode?
    if mtd.doesExist('hard_mask_ws') == True:
        DeleteWorkspace(Workspace='hard_mask_ws')

    return deltaE_wkspace_sample
예제 #21
0
 def op_wrapper(self, other):
     # Get the result variable to know what to call the output
     result_info = lhs_info()
     # Pass off to helper
     return _do_binary_operation(algorithm, self, other, result_info,
                          inplace, reverse)
예제 #22
0
 def op_wrapper(self):
     # Get the result variable to know what to call the output
     result_info = lhs_info()
     # Pass off to helper
     return _do_unary_operation(algorithm, self, result_info)
예제 #23
0
    def cutMatplotlib(self, direction, intMin, intMax, minX, delX, maxX,
                      **kwargs):

        #keywords, wkspout= name of output
        #		   wkspIn= input data

        #deal with the call type and where to get the output workspace name from
        if kwargs.has_key('wkspout'):
            cut_name = kwargs.get('wkspout')
        else:
            n, r = funcreturns.lhs_info('both')
            cut_name = r[0]

        if direction == 'x':
            if kwargs.has_key('wkspIn'):
                wkspinName = kwargs.get('wkspIn')
                Rebin2D(InputWorkspace=wkspinName,
                        OutputWorkspace=cut_name,
                        Axis1Binning=str(minX) + ',' + str(delX) + ',' +
                        str(maxX),
                        Axis2Binning=str(intMin) + ',' + str(intMax - intMin) +
                        ',' + str(intMax),
                        UseFractionalArea='1')

            else:
                Rebin2D(InputWorkspace=self.data,
                        OutputWorkspace=cut_name,
                        Axis1Binning=str(minX) + ',' + str(delX) + ',' +
                        str(maxX),
                        Axis2Binning=str(intMin) + ',' + str(intMax - intMin) +
                        ',' + str(intMax),
                        UseFractionalArea='1')

        if direction == 'y':
            if kwargs.has_key('wkspin'):
                wkspinName = kwargs.get('wkspin')
                Rebin2D(InputWorkspace=wkspinName,
                        OutputWorkspace=cut_name,
                        Axis1Binning=str(intMin) + ',' + str(intMax - intMin) +
                        ',' + str(intMax),
                        Axis2Binning=str(minX) + ',' + str(delX) + ',' +
                        str(maxX),
                        UseFractionalArea='1')
                Transpose(InputWorkspace=cut_name, OutputWorkspace=cut_name)
            else:
                Rebin2D(InputWorkspace=self.data,
                        OutputWorkspace=cut_name,
                        Axis1Binning=str(intMin) + ',' + str(intMax - intMin) +
                        ',' + str(intMax),
                        Axis2Binning=str(minX) + ',' + str(delX) + ',' +
                        str(maxX),
                        UseFractionalArea='1')
                Transpose(InputWorkspace=cut_name, OutputWorkspace=cut_name)

        ReplaceSpecialValues(InputWorkspace=cut_name,
                             OutputWorkspace=cut_name,
                             NaNValue='0',
                             InfinityValue='0')

        cutDataWorkSpace = mtd[cut_name]
        evals = cutDataWorkSpace.extractE()
        xvals = cutDataWorkSpace.extractX()
        yvals = cutDataWorkSpace.extractY()

        NewXvals = (xvals +
                    numpy.roll(xvals, -1)) / 2  # calculate the bin center
        NewXvals = numpy.delete(NewXvals,
                                -1)  # remove the last element which is junk
        yvals = yvals[0]
        evals = evals[0]

        output = [NewXvals, yvals, evals]
        return output
예제 #24
0
def abs_units(wb_for_run,sample_run,monovan_run,wb_for_monovanadium,samp_rmm,samp_mass,ei_guess,rebin,map_file='default',monovan_mapfile='default',**kwargs):
    """
    dgreduce.abs_units(wb_run          Whitebeam run number or file name or workspace
                  sample_run          Sample run run number or file name or workspace
                  monovan_run          Monochromatic run run number or file name or workspace
                  wb_mono          White beam for Monochromatic run run number or file name or workspace
                  samp_rmm          Mass of formula unit of sample
                  samp_mass          Actual sample mass
                  ei_guess          Ei guess of run
                  rebin          Rebin parameters for output data
                  map_file          Mapfile for sample run
                  monovan_mapfile     Mapfile for mono van run
                  keyword arguments     Any specified additional keyword arguments

    Example with run numbers
    abs_units(11001,11002,11003,10098,250.1,5.2,80,'-10,.1,75','mari_res','mari_res')

    A detector calibration file must be specified if running the reduction with workspace inputs

    Example with workspace inputs

    abs_units('wb_run','sam_run','mono_run','wb_for_mono',250.1,5.2,80,'-10,.1,75','mari_res','mari_res',
                   det_cal_file=10001,diag_remove_zero=False,norm_method='current')


    A detector calibration file must be specified if running the reduction with workspace inputs
    Available keywords
    norm_method =[monitor-1],[monitor-2][Current]
    background  =False , True
    fixei       =False , True
    save_format =['.spe'],['.nxspe'],'none'
    detector_van_range          =[20,40] in mev

    bkgd_range  =[15000,19000]  :integration range for background tests

    second_white    - If provided an additional set of tests is performed on this. (default = None)
    hard_mask_file       - A file specifying those spectra that should be masked without testing (default=None)
    tiny            - Minimum threshold for acceptance (default = 1e-10)
    large           - Maximum threshold for acceptance (default = 1e10)
    bkgd_range      - A list of two numbers indicating the background range (default=instrument defaults)
    diag_van_median_rate_limit_lo   - Lower bound defining outliers as fraction of median value (default = 0.01)
    diag_van_median_rate_limit_hi   - Upper bound defining outliers as fraction of median value (default = 100.)
    diag_van_median_sigma_lo        - Fraction of median to consider counting low for the white beam diag (default = 0.1)
    diag_van_median_sigma_hi        - Fraction of median to consider counting high for the white beam diag (default = 1.5)
    diag_van_sig  - Error criterion as a multiple of error bar i.e. to fail the test, the magnitude of the
                    difference with respect to the median value must also exceed this number of error bars (default=0.0)
    diag_remove_zero                - If true then zeros in the vanadium data will count as failed (default = True)
    diag_samp_samp_median_sigma_lo  - Fraction of median to consider counting low for the white beam diag (default = 0)
    diag_samp_samp_median_sigma_hi  - Fraction of median to consider counting high for the white beam diag (default = 2.0)
    diag_samp_sig                   - Error criterion as a multiple of error bar i.e. to fail the test, the magnitude of the"
                                      difference with respect to the median value must also exceed this number of error bars (default=3.3)
    variation       -The number of medians the ratio of the first/second white beam can deviate from
                    the average by (default=1.1)
    bleed_test      - If true then the CreatePSDBleedMask algorithm is run
    bleed_maxrate   - If the bleed test is on then this is the maximum frame rate allowed in a tube
    bleed_pixels    - If the bleed test is on then this is the number of pixels ignored within the
                    bleed test diagnostic
    print_results - If True then the results are printed to the screen

    diag_remove_zero =True, False (default):Diag zero counts in background range

    bleed=True , turn bleed correction on and off on by default for Merlin and LET

    sum =True,False(default) , sum multiple files

    det_cal_file= a valid detector block file and path or a raw file. Setting this
                     will use the detector calibration from the specified file NOT the
                     input raw file
    mask_run = RunNumber to use for diag instead of the input run number

    one2one =True, False :Reduction will not use a mapping file

    hardmaskPlus=Filename :load a hardmarkfile and apply together with diag mask

    hardmaskOnly=Filename :load a hardmask and use as only mask

    use_sam_msk_on_monovan=False This will set the total mask to be that of the sample run

    abs_units_van_range=[-40,40] integral range for absolute vanadium data

    mono_correction_factor=float User specified correction factor for absolute units normalization
    """

    kwargs['monovan_mapfile']    = monovan_mapfile
    kwargs['sample_mass']        = samp_mass
    kwargs['sample_rmm']         = samp_rmm

    if sample_run:
        Reducer.sample_run = sample_run
    try:
        n,r=funcreturns.lhs_info('both')
        results_name=r[0]

    except:
        results_name = Reducer.prop_man.get_sample_ws_name()
    if wb_for_run == wb_for_monovanadium: # wb_for_monovanadium property does not accept duplicated workspace
        wb_for_monovanadium = None        # if this value is none, it is constructed to be equal to wb_for_run

    wksp_out = arb_units(wb_for_run,sample_run,ei_guess,rebin,map_file,monovan_run,wb_for_monovanadium,**kwargs)


    if  results_name != wksp_out.getName():
        RenameWorkspace(InputWorkspace=wksp_out,OutputWorkspace=results_name)

    return wksp_out
예제 #25
0
def abs_units(wb_for_run,sample_run,monovan_run,wb_for_monovanadium,samp_rmm,samp_mass,ei_guess,rebin,map_file='default',monovan_mapfile='default',**kwargs):
    """
    dgreduce.abs_units(wb_run          Whitebeam run number or file name or workspace
                  sample_run          Sample run run number or file name or workspace
                  monovan_run          Monochromatic run run number or file name or workspace
                  wb_mono          White beam for Monochromatic run run number or file name or workspace
                  samp_rmm          Mass of formula unit of sample
                  samp_mass          Actual sample mass
                  ei_guess          Ei guess of run
                  rebin          Rebin parameters for output data
                  map_file          Mapfile for sample run
                  monovan_mapfile     Mapfile for mono van run
                  keyword arguments     Any specified additional keyword arguments

    Example with run numbers
    abs_units(11001,11002,11003,10098,250.1,5.2,80,'-10,.1,75','mari_res','mari_res')

    A detector calibration file must be specified if running the reduction with workspace inputs

    Example with workspace inputs

    abs_units('wb_run','sam_run','mono_run','wb_for_mono',250.1,5.2,80,'-10,.1,75','mari_res','mari_res',
                   det_cal_file=10001,diag_remove_zero=False,norm_method='current')


    A detector calibration file must be specified if running the reduction with workspace inputs
    Available keywords
    norm_method =[monitor-1],[monitor-2][Current]
    background  =False , True
    fixei       =False , True
    save_format =['.spe'],['.nxspe'],'none'
    detector_van_range          =[20,40] in mev

    bkgd_range  =[15000,19000]  :integration range for background tests

    second_white    - If provided an additional set of tests is performed on this. (default = None)
    hard_mask_file       - A file specifying those spectra that should be masked without testing (default=None)
    tiny            - Minimum threshold for acceptance (default = 1e-10)
    large           - Maximum threshold for acceptance (default = 1e10)
    bkgd_range      - A list of two numbers indicating the background range (default=instrument defaults)
    diag_van_median_rate_limit_lo   - Lower bound defining outliers as fraction of median value (default = 0.01)
    diag_van_median_rate_limit_hi   - Upper bound defining outliers as fraction of median value (default = 100.)
    diag_van_median_sigma_lo        - Fraction of median to consider counting low for the white beam diag (default = 0.1)
    diag_van_median_sigma_hi        - Fraction of median to consider counting high for the white beam diag (default = 1.5)
    diag_van_sig  - Error criterion as a multiple of error bar i.e. to fail the test, the magnitude of the
                    difference with respect to the median value must also exceed this number of error bars (default=0.0)
    diag_remove_zero                - If true then zeros in the vanadium data will count as failed (default = True)
    diag_samp_samp_median_sigma_lo  - Fraction of median to consider counting low for the white beam diag (default = 0)
    diag_samp_samp_median_sigma_hi  - Fraction of median to consider counting high for the white beam diag (default = 2.0)
    diag_samp_sig                   - Error criterion as a multiple of error bar i.e. to fail the test, the magnitude of the"
                                      difference with respect to the median value must also exceed this number of error bars (default=3.3)
    variation       -The number of medians the ratio of the first/second white beam can deviate from
                    the average by (default=1.1)
    bleed_test      - If true then the CreatePSDBleedMask algorithm is run
    bleed_maxrate   - If the bleed test is on then this is the maximum frame rate allowed in a tube
    bleed_pixels    - If the bleed test is on then this is the number of pixels ignored within the
                    bleed test diagnostic
    print_results - If True then the results are printed to the screen

    diag_remove_zero =True, False (default):Diag zero counts in background range

    bleed=True , turn bleed correction on and off on by default for Merlin and LET

    sum =True,False(default) , sum multiple files

    det_cal_file= a valid detector block file and path or a raw file. Setting this
                     will use the detector calibration from the specified file NOT the
                     input raw file
    mask_run = RunNumber to use for diag instead of the input run number

    one2one =True, False :Reduction will not use a mapping file

    hardmaskPlus=Filename :load a hardmarkfile and apply together with diag mask

    hardmaskOnly=Filename :load a hardmask and use as only mask

    use_sam_msk_on_monovan=False This will set the total mask to be that of the sample run

    abs_units_van_range=[-40,40] integral range for absolute vanadium data

    mono_correction_factor=float User specified correction factor for absolute units normalization
    """

    kwargs['monovan_mapfile']    = monovan_mapfile
    kwargs['sample_mass']        = samp_mass
    kwargs['sample_rmm']         = samp_rmm

    if sample_run:
        Reducer.sample_run = sample_run
    try:
        n,r=funcreturns.lhs_info('both')
        results_name=r[0]

    except:
        results_name = Reducer.prop_man.get_sample_ws_name()
    if wb_for_run == wb_for_monovanadium: # wb_for_monovanadium property does not accept duplicated workspace
        wb_for_monovanadium = None        # if this value is none, it is constructed to be equal to wb_for_run

    wksp_out = arb_units(wb_for_run,sample_run,ei_guess,rebin,map_file,monovan_run,wb_for_monovanadium,**kwargs)


    if  results_name != wksp_out.getName():
        RenameWorkspace(InputWorkspace=wksp_out,OutputWorkspace=results_name)

    return wksp_out
예제 #26
0
def arb_units(wb_run,sample_run,ei_guess,rebin,map_file='default',monovan_run=None,second_wb=None,**kwargs):
    """ One step conversion of run into workspace containing information about energy transfer
    Usage:
    >>arb_units(wb_run,sample_run,ei_guess,rebin)

    >>arb_units(wb_run,sample_run,ei_guess,rebin,**arguments)

    >>arb_units(wb_run,sample_run,ei_guess,rebin,mapfile,**arguments)

    >>arb_units(wb_run   Whitebeam run number or file name or workspace
                sample_run  sample run number or file name or workspace
                ei_guess    Ei guess
                rebin       Rebin parameters
                mapfile     Mapfile -- if absent/'default' the defaults from IDF are used
                monovan_run If present will do the absolute units normalization. Number of additional parameters
                            specified in **kwargs is usually requested for this. If they are absent, program uses defaults,
                            but the defaults (e.g. sample_mass or sample_rmm ) are usually incorrect for a particular run.
                arguments   The dictionary containing additional keyword arguments.
                            The list of allowed additional arguments is defined in InstrName_Parameters.xml file, located in
                            MantidPlot->View->Preferences->Mantid->Directories->Parameter Definitions

    with run numbers as input:
    >>dgreduce.arb_units(1000,10001,80,[-10,.1,70])  # will run on default instrument

    >>dgreduce.arb_units(1000,10001,80,[-10,.1,70],'mari_res', additional keywords as required)

    >>dgreduce.arb_units(1000,10001,80,'-10,.1,70','mari_res',fixei=True)

    A detector calibration file must be specified if running the reduction with workspaces as input
    namely:
    >>w2=iliad("wb_wksp","run_wksp",ei,rebin_params,mapfile,det_cal_file=cal_file
               ,diag_remove_zero=False,norm_method='current')


    type help() for the list of all available keywords. All availible keywords are provided in InstName_Parameters.xml file


    Some samples are:
    norm_method =[monitor-1],[monitor-2][Current]
    background  =False , True
    fixei       =False , True
    save_format =['.spe'],['.nxspe'],'none'
    detector_van_range          =[20,40] in mev

    bkgd_range  =[15000,19000]  :integration range for background tests

    second_white     - If provided an additional set of tests is performed on this. (default = None)
    hardmaskPlus     - A file specifying those spectra that should be masked without testing (default=None)
    tiny             - Minimum threshold for acceptance (default = 1e-10)
    large            - Maximum threshold for acceptance (default = 1e10)
    bkgd_range       - A list of two numbers indicating the background range (default=instrument defaults)
    diag_van_median_rate_limit_lo      - Lower bound defining outliers as fraction of median value (default = 0.01)
    diag_van_median_rate_limit_hi      - Upper bound defining outliers as fraction of median value (default = 100.)
    diag_van_median_sigma_lo           - Fraction of median to consider counting low for the white beam diag (default = 0.1)
    diag_van_median_sigma_hi           - Fraction of median to consider counting high for the white beam diag (default = 1.5)
    diag_van_sig  - Error criterion as a multiple of error bar i.e. to fail the test, the magnitude of the
                    difference with respect to the median value must also exceed this number of error bars (default=0.0)
    diag_remove_zero                - If true then zeroes in the vanadium data will count as failed (default = True)
    diag_samp_samp_median_sigma_lo  - Fraction of median to consider counting low for the white beam diag (default = 0)
    diag_samp_samp_median_sigma_hi  - Fraction of median to consider counting high for the white beam diag (default = 2.0)
    diag_samp_sig                   - Error criterion as a multiple of error bar i.e. to fail the test, the magnitude of the"
                                      difference with respect to the median value must also exceed this number of error bars (default=3.3)
    variation       -The number of medians the ratio of the first/second white beam can deviate from
                     the average by (default=1.1)
    bleed_test      - If true then the CreatePSDBleedMask algorithm is run
    bleed_maxrate   - If the bleed test is on then this is the maximum framerate allowed in a tube
    bleed_pixels    - If the bleed test is on then this is the number of pixels ignored within the
                       bleed test diagnostic
    print_results - If True then the results are printed to the screen

    diag_remove_zero =True, False (default):Diag zero counts in background range
    bleed=True , turn bleed correction on and off on by default for Merlin and LET

    sum =True,False(default) , sum multiple files

    det_cal_file= a valid detector block file and path or a raw file. Setting this
                  will use the detector calibraion from the specified file NOT the
                  input raw file
    mask_run = RunNumber to use for diag instead of the input run number

    one2one =True, False :Reduction will not use a mapping file

    hardmaskPlus=Filename :load a hardmarkfile and apply together with diag mask

    hardmaskOnly=Filename :load a hardmask and use as only mask

    """
    global Reducer
    if Reducer is None or Reducer.instrument is None:
        raise ValueError("instrument has not been defined, call setup(instrument_name) first.")
# --------------------------------------------------------------------------------------------------------
#    Deal with mandatory parameters for this and may be some top level procedures
# --------------------------------------------------------------------------------------------------------
    if sample_run:
        Reducer.sample_run = sample_run
    try:
         n,r=funcreturns.lhs_info('both')
         wksp_out=r[0]
    except:
         wksp_out = Reducer.prop_man.get_sample_ws_name()
    #
    res = Reducer.convert_to_energy(wb_run,sample_run,ei_guess,rebin,map_file,monovan_run,second_wb,**kwargs)
    #
    results_name = res.name()
    if results_name != wksp_out:
        RenameWorkspace(InputWorkspace=results_name,OutputWorkspace=wksp_out)


    return res
예제 #27
0
 def op_wrapper(self, other):
     # Get the result variable to know what to call the output
     result_info = lhs_info()
     # Pass off to helper
     return _do_binary_operation(algorithm, self, other, result_info,
                                 inplace, reverse)
예제 #28
0
def arb_units(wb_run,sample_run,ei_guess,rebin,map_file='default',monovan_run=None,second_wb=None,**kwargs):
    """ One step conversion of run into workspace containing information about energy transfer
    Usage:
    >>arb_units(wb_run,sample_run,ei_guess,rebin)

    >>arb_units(wb_run,sample_run,ei_guess,rebin,**arguments)

    >>arb_units(wb_run,sample_run,ei_guess,rebin,mapfile,**arguments)

    >>arb_units(wb_run   Whitebeam run number or file name or workspace
                sample_run  sample run number or file name or workspace
                ei_guess    Ei guess
                rebin       Rebin parameters
                mapfile     Mapfile -- if absent/'default' the defaults from IDF are used
                monovan_run If present will do the absolute units normalization. Number of additional parameters
                            specified in **kwargs is usually requested for this. If they are absent, program uses defaults,
                            but the defaults (e.g. sample_mass or sample_rmm ) are usually incorrect for a particular run.
                arguments   The dictionary containing additional keyword arguments.
                            The list of allowed additional arguments is defined in InstrName_Parameters.xml file, located in
                            MantidPlot->View->Preferences->Mantid->Directories->Parameter Definitions

    with run numbers as input:
    >>dgreduce.arb_units(1000,10001,80,[-10,.1,70])  # will run on default instrument

    >>dgreduce.arb_units(1000,10001,80,[-10,.1,70],'mari_res', additional keywords as required)

    >>dgreduce.arb_units(1000,10001,80,'-10,.1,70','mari_res',fixei=True)

    A detector calibration file must be specified if running the reduction with workspaces as input
    namely:
    >>w2=iliad("wb_wksp","run_wksp",ei,rebin_params,mapfile,det_cal_file=cal_file
               ,diag_remove_zero=False,norm_method='current')


    type help() for the list of all available keywords. All availible keywords are provided in InstName_Parameters.xml file


    Some samples are:
    norm_method =[monitor-1],[monitor-2][Current]
    background  =False , True
    fixei       =False , True
    save_format =['.spe'],['.nxspe'],'none'
    detector_van_range          =[20,40] in mev

    bkgd_range  =[15000,19000]  :integration range for background tests

    second_white     - If provided an additional set of tests is performed on this. (default = None)
    hardmaskPlus     - A file specifying those spectra that should be masked without testing (default=None)
    tiny             - Minimum threshold for acceptance (default = 1e-10)
    large            - Maximum threshold for acceptance (default = 1e10)
    bkgd_range       - A list of two numbers indicating the background range (default=instrument defaults)
    diag_van_median_rate_limit_lo      - Lower bound defining outliers as fraction of median value (default = 0.01)
    diag_van_median_rate_limit_hi      - Upper bound defining outliers as fraction of median value (default = 100.)
    diag_van_median_sigma_lo           - Fraction of median to consider counting low for the white beam diag (default = 0.1)
    diag_van_median_sigma_hi           - Fraction of median to consider counting high for the white beam diag (default = 1.5)
    diag_van_sig  - Error criterion as a multiple of error bar i.e. to fail the test, the magnitude of the
                    difference with respect to the median value must also exceed this number of error bars (default=0.0)
    diag_remove_zero                - If true then zeroes in the vanadium data will count as failed (default = True)
    diag_samp_samp_median_sigma_lo  - Fraction of median to consider counting low for the white beam diag (default = 0)
    diag_samp_samp_median_sigma_hi  - Fraction of median to consider counting high for the white beam diag (default = 2.0)
    diag_samp_sig                   - Error criterion as a multiple of error bar i.e. to fail the test, the magnitude of the"
                                      difference with respect to the median value must also exceed this number of error bars (default=3.3)
    variation       -The number of medians the ratio of the first/second white beam can deviate from
                     the average by (default=1.1)
    bleed_test      - If true then the CreatePSDBleedMask algorithm is run
    bleed_maxrate   - If the bleed test is on then this is the maximum framerate allowed in a tube
    bleed_pixels    - If the bleed test is on then this is the number of pixels ignored within the
                       bleed test diagnostic
    print_results - If True then the results are printed to the screen

    diag_remove_zero =True, False (default):Diag zero counts in background range
    bleed=True , turn bleed correction on and off on by default for Merlin and LET

    sum =True,False(default) , sum multiple files

    det_cal_file= a valid detector block file and path or a raw file. Setting this
                  will use the detector calibraion from the specified file NOT the
                  input raw file
    mask_run = RunNumber to use for diag instead of the input run number

    one2one =True, False :Reduction will not use a mapping file

    hardmaskPlus=Filename :load a hardmarkfile and apply together with diag mask

    hardmaskOnly=Filename :load a hardmask and use as only mask

    """
    global Reducer
    if Reducer is None or Reducer.instrument is None:
        raise ValueError("instrument has not been defined, call setup(instrument_name) first.")
# --------------------------------------------------------------------------------------------------------
#    Deal with mandatory parameters for this and may be some top level procedures
# --------------------------------------------------------------------------------------------------------
    if sample_run:
        Reducer.sample_run = sample_run
    try:
         n,r=funcreturns.lhs_info('both')
         wksp_out=r[0]
    except:
         wksp_out = Reducer.prop_man.get_sample_ws_name();
    #
    res = Reducer.convert_to_energy(wb_run,sample_run,ei_guess,rebin,map_file,monovan_run,second_wb,**kwargs)
    #
    results_name = res.name();
    if results_name != wksp_out:
        RenameWorkspace(InputWorkspace=results_name,OutputWorkspace=wksp_out)


    return res
예제 #29
0
 def QCut(self, Emin, Emax, Qmin, delQ, Qmax, **kwargs):
     intmin = Emin
     intmax = Emax
     cutmin = Qmin
     delcut = delQ
     cutmax = Qmax
     try:
         n, r = funcreturns.lhs_info('both')
         name = r[0]
         if kwargs.has_key('shoelace'):
             if kwargs.has_key('over'):
                 if kwargs.has_key('Handle'):
                     fighandle = kwargs.get_key('Handle')
                     self.cut(self.data,
                              intmin,
                              intmax,
                              cutmin,
                              delcut,
                              cutmax,
                              along='q',
                              over=True,
                              cutName=name,
                              shoelace=True,
                              Handle=fighandle)
                 else:
                     self.cut(self.data,
                              intmin,
                              intmax,
                              cutmin,
                              delcut,
                              cutmax,
                              along='q',
                              over=True,
                              cutName=name,
                              shoelace=True)
             else:
                 self.cut(self.data,
                          intmin,
                          intmax,
                          cutmin,
                          delcut,
                          cutmax,
                          along='q',
                          cutName=name,
                          shoelace=True)
         else:
             if kwargs.has_key('over'):
                 if kwargs.has_key('Handle'):
                     fighandle = kwargs.get('Handle')
                     self.cut(self.data,
                              intmin,
                              intmax,
                              cutmin,
                              delcut,
                              cutmax,
                              along='q',
                              over=True,
                              cutName=name,
                              Handle=fighandle)
                 else:
                     self.cut(self.data,
                              intmin,
                              intmax,
                              cutmin,
                              delcut,
                              cutmax,
                              along='q',
                              over=True,
                              cutName=name)
             else:
                 self.cut(self.data,
                          intmin,
                          intmax,
                          cutmin,
                          delcut,
                          cutmax,
                          along='q',
                          cutName=name)
     except:
         if kwargs.has_key('shoelace'):
             if kwargs.has_key('over'):
                 if kwargs.has_key('Handle'):
                     fighandle = kwargs.get('Handle')
                     self.cut(self.data,
                              intmin,
                              intmax,
                              cutmin,
                              delcut,
                              cutmax,
                              along='q',
                              over=True,
                              shoelace=True,
                              Handle=fighandle)
                 else:
                     self.cut(self.data,
                              intmin,
                              intmax,
                              cutmin,
                              delcut,
                              cutmax,
                              along='q',
                              over=True,
                              shoelace=True)
             else:
                 self.cut(self.data,
                          intmin,
                          intmax,
                          cutmin,
                          delcut,
                          cutmax,
                          along='q',
                          shoelace=True)
         else:
             if kwargs.has_key('over'):
                 if kwargs.has_key('Handle'):
                     fighandle = kwargs.get('Handle')
                     self.cut(self.data,
                              intmin,
                              intmax,
                              cutmin,
                              delcut,
                              cutmax,
                              along='q',
                              over=True,
                              Handle=fighandle)
                 else:
                     self.cut(self.data,
                              intmin,
                              intmax,
                              cutmin,
                              delcut,
                              cutmax,
                              along='q',
                              over=True)
             else:
                 self.cut(self.data,
                          intmin,
                          intmax,
                          cutmin,
                          delcut,
                          cutmax,
                          along='q')
예제 #30
0
    def iliad_wrapper(*args):
        #seq = inspect.stack()
        # output workspace name.
        try:
            _, r = funcreturns.lhs_info('both')
            out_ws_name = r[0]


# no-exception-type(s) specified. Who knows what exception this internal procedure rises...
#pylint: disable=W0702
        except:
            out_ws_name = None

        host = args[0]
        if len(args) > 1:
            input_file = args[1]
            if len(args) > 2:
                output_directory = args[2]
            else:
                output_directory = None
        else:
            input_file = None
            output_directory = None
        # add input file folder to data search directory if file has it
        if input_file and isinstance(input_file, str):
            data_path = os.path.dirname(input_file)
            if len(data_path) > 0:
                try:
                    config.appendDataSearchDir(str(data_path))
                    args[1] = os.path.basename(input_file)
                #pylint: disable=bare-except
                except:  # if mantid is not available, this should ignore config
                    pass
        if output_directory:
            config['defaultsave.directory'] = str(output_directory)

        #pylint: disable=protected-access
        if host._run_from_web:
            #pylint: disable=protected-access
            web_vars = host._wvs.get_all_vars()
            host.reducer.prop_man.set_input_parameters(**web_vars)
        else:
            pass  # we should set already set up variables using

        custom_print_function = host.set_custom_output_filename()
        if not custom_print_function is None:
            PropertyManager.save_file_name.set_custom_print(
                custom_print_function)
        #
        rez = reduce(*args)

        # prohibit returning workspace to web services.
        #pylint: disable=protected-access
        if host._run_from_web and not isinstance(rez, str):
            rez = ""
        else:
            if isinstance(rez, list):
                # multirep run, just return as it is
                return rez
            if not (rez is None) and out_ws_name and rez.name() != out_ws_name:
                # the function does not return None, pylint is wrong
                #pylint: disable=W1111
                rez = RenameWorkspace(InputWorkspace=rez,
                                      OutputWorkspace=out_ws_name)

        return rez
예제 #31
0
 def op_wrapper(self):
     # Get the result variable to know what to call the output
     result_info = lhs_info()
     # Pass off to helper
     return _do_unary_operation(algorithm, self, result_info)
예제 #32
0
    def run_reduction(self):
        """" Reduces runs one by one or sum all them together and reduce after this

            if wait_for_file time is > 0, it will until  missing files appear on the
            data search path
        """
        try:
            n,r = funcreturns.lhs_info('both')
            out_ws_name = r[0]
        except:
            out_ws_name = None

        # if this is not None, we want to run validation not reduction
        if self.validate_run_number:
            self.reducer.prop_man.log\
            ("**************************************************************************************",'warning')
            self.reducer.prop_man.log\
            ("**************************************************************************************",'warning')
            rez,mess=self.build_or_validate_result()
            if rez:
                self.reducer.prop_man.log("*** SUCCESS! {0}".format(mess))
                self.reducer.prop_man.log\
               ("**************************************************************************************",'warning')

            else:
                self.reducer.prop_man.log("*** VALIDATION FAILED! {0}".format(mess))
                self.reducer.prop_man.log\
               ("**************************************************************************************",'warning')
                raise RuntimeError("Validation against old data file failed")
            self.validate_run_number=None
            return rez,mess

        if self.reducer.sum_runs:
# --------### sum runs provided ------------------------------------###
            if out_ws_name is None:
                self.sum_and_reduce()
                return None
            else:
                red_ws = self.sum_and_reduce()
                RenameWorkspace(InputWorkspace=red_ws,OutputWorkspace=out_ws_name)
                return mtd[out_ws_name]
        else:
# --------### reduce list of runs one by one ----------------------------###
            runfiles = PropertyManager.sample_run.get_run_file_list()
            if out_ws_name is None:
                for file in runfiles:
                    self.reduce(file)
                return None
            else:
                results = []
                nruns = len(runfiles)
                for num,file in enumerate(runfiles):
                    red_ws = self.reduce(file)
                    if isinstance(red_ws,list):
                        for ws in red_ws:
                            results.append(ws)
                    else:
                        if nruns == 1:
                            if red_ws.name() != out_ws_name:
                                RenameWorkspace(InputWorkspace=red_ws,OutputWorkspace=out_ws_name)
                            results.append(mtd[out_ws_name])
                        else:
                            OutWSName = '{0}#{1}of{2}'.format(out_ws_name,num+1,nruns)
                            if red_ws.name() != out_ws_name:
                                RenameWorkspace(InputWorkspace=red_ws,OutputWorkspace=OutWSName)
                            results.append(mtd[OutWSName])
                #end
                if len(results) == 1:
                    return results[0]
                else:
                    return results
예제 #33
0
    def run_reduction(self):
        """" Reduces runs one by one or sum all them together and reduce after this

            if wait_for_file time is > 0, it will until  missing files appear on the
            data search path
        """
        try:
            _, r = funcreturns.lhs_info('both')
            out_ws_name = r[0]


# no-exception-type(s) specified. Who knows what exception this internal procedure rises...
#pylint: disable=W0702
        except:
            out_ws_name = None

        # if this is not None, we want to run validation not reduction
        if self.validate_run_number:
            self.reducer.prop_man.log\
            ("**************************************************************************************",'warning')
            self.reducer.prop_man.log\
            ("**************************************************************************************",'warning')
            rez, mess = self.build_or_validate_result()
            if rez:
                self.reducer.prop_man.log("*** SUCCESS! {0}".format(mess))
                self.reducer.prop_man.log\
               ("**************************************************************************************",'warning')

            else:
                self.reducer.prop_man.log(
                    "*** VALIDATION FAILED! {0}".format(mess))
                self.reducer.prop_man.log\
               ("**************************************************************************************",'warning')
                raise RuntimeError("Validation against old data file failed")
            self.validate_run_number = None
            return rez, mess

        if self.reducer.sum_runs:
            # --------### sum runs provided ------------------------------------###
            if out_ws_name is None:
                self.sum_and_reduce()
                return None
            else:
                red_ws = self.sum_and_reduce()
                RenameWorkspace(InputWorkspace=red_ws,
                                OutputWorkspace=out_ws_name)
                return mtd[out_ws_name]
        else:
            # --------### reduce list of runs one by one ----------------------------###
            runfiles = PropertyManager.sample_run.get_run_file_list()
            if out_ws_name is None:
                for file_name in runfiles:
                    self.reduce(file_name)
                return None
            else:
                results = []
                nruns = len(runfiles)
                for num, file_name in enumerate(runfiles):
                    red_ws = self.reduce(file_name)
                    if isinstance(red_ws, list):
                        for ws in red_ws:
                            results.append(ws)
                    else:
                        if nruns == 1:
                            if red_ws.name() != out_ws_name:
                                RenameWorkspace(InputWorkspace=red_ws,
                                                OutputWorkspace=out_ws_name)
                            results.append(mtd[out_ws_name])
                        else:
                            OutWSName = '{0}#{1}of{2}'.format(
                                out_ws_name, num + 1, nruns)
                            if red_ws.name() != out_ws_name:
                                RenameWorkspace(InputWorkspace=red_ws,
                                                OutputWorkspace=OutWSName)
                            results.append(mtd[OutWSName])
                #end
                if len(results) == 1:
                    return results[0]
                else:
                    return results