def test_HFIRCalculateGoniometer_HB3A_phi(self): omega = np.deg2rad(42) chi = np.deg2rad(-3) phi = np.deg2rad(23) R1 = np.array([ [np.cos(omega), 0, -np.sin(omega)], # omega 0,1,0,-1 [0, 1, 0], [np.sin(omega), 0, np.cos(omega)] ]) R2 = np.array([ [np.cos(chi), np.sin(chi), 0], # chi 0,0,1,-1 [-np.sin(chi), np.cos(chi), 0], [0, 0, 1] ]) R3 = np.array([ [np.cos(phi), 0, -np.sin(phi)], # phi 0,1,0,-1 [0, 1, 0], [np.sin(phi), 0, np.cos(phi)] ]) R = np.dot(np.dot(R1, R2), R3) wl = 1.54 k = 2 * np.pi / wl theta = np.deg2rad(47) phi = np.deg2rad(13) q_lab = np.array([ -np.sin(theta) * np.cos(phi), -np.sin(theta) * np.sin(phi), 1 - np.cos(theta) ]) * k q_sample = np.dot(np.linalg.inv(R), q_lab) peaks = CreatePeaksWorkspace(OutputType="LeanElasticPeak", NumberOfPeaks=0) AddSampleLog(peaks, "Wavelength", str(wl), "Number") SetGoniometer(peaks, Axis0='42,0,1,0,-1', Axis1='-3,0,0,1,-1') # don't set phi p = peaks.createPeakQSample(q_sample) peaks.addPeak(p) HFIRCalculateGoniometer(peaks, OverrideProperty=True, InnerGoniometer=True) g = Goniometer() g.setR(peaks.getPeak(0).getGoniometerMatrix()) YZY = g.getEulerAngles('YZY') self.assertAlmostEqual(YZY[0], -42, delta=1e-10) # omega self.assertAlmostEqual(YZY[1], 3, delta=1e-10) # chi self.assertAlmostEqual(YZY[2], -23, delta=1e-1) # phi self.assertAlmostEqual(peaks.getPeak(0).getWavelength(), 1.54, delta=1e-10)
def test_get_hkls(self): ws = CreateSimulationWorkspace("IRIS", BinParams="1,5,10") peaks = CreatePeaksWorkspace(ws, 2) reference = np.array([ [1, 1, 2], [2, 1, 4], ]) peak = peaks.getPeak(0) peak.setHKL(1, 1, 2) peak = peaks.getPeak(1) peak.setHKL(2, 1, 4) hkl = indexing.get_hkls(peaks) npt.assert_array_equal(hkl, reference)
def test_basic_access(self): sampleWs = CreateSampleWorkspace() ws = CreatePeaksWorkspace(InstrumentWorkspace=sampleWs,NumberOfPeaks=1) peak = ws.getPeak(0) peak_shape = peak.getPeakShape() self.assertTrue(isinstance(peak_shape, PeakShape)) self.assertEquals(peak_shape.shapeName(), "none")
def test_basic_access(self): sampleWs = CreateSampleWorkspace() ws = CreatePeaksWorkspace(InstrumentWorkspace=sampleWs,NumberOfPeaks=1) peak = ws.getPeak(0) peak_shape = peak.getPeakShape() self.assertTrue(isinstance(peak_shape, PeakShape)) self.assertEqual(peak_shape.shapeName(), "none")
def setUp(self): # IPeak cannot currently be instatiated so this is a quick way # getting a handle to a peak object ws = CreateSimulationWorkspace("SXD", BinParams="1,1,10") peaks = CreatePeaksWorkspace(ws, 1) self._peak = peaks.getPeak(0) # tolerance for differences in q vectors that a recomputed # on every call. self._tolerance = 1e-2
def test_HFIRCalculateGoniometer_HB2C_omega(self): omega = np.deg2rad(42) R = np.array([[np.cos(omega), 0, np.sin(omega)], [0, 1, 0], [-np.sin(omega), 0, np.cos(omega)]]) wl = 1.54 k = 2 * np.pi / wl theta = np.deg2rad(47) phi = np.deg2rad(13) q_lab = np.array([ -np.sin(theta) * np.cos(phi), -np.sin(theta) * np.sin(phi), 1 - np.cos(theta) ]) * k q_sample = np.dot(np.linalg.inv(R), q_lab) peaks = CreatePeaksWorkspace(OutputType="LeanElasticPeak", NumberOfPeaks=0) p = peaks.createPeakQSample(q_sample) peaks.addPeak(p) HFIRCalculateGoniometer(peaks, wl) g = Goniometer() g.setR(peaks.getPeak(0).getGoniometerMatrix()) YZY = g.getEulerAngles('YZY') self.assertAlmostEqual(YZY[0], 42, delta=1e-10) # omega self.assertAlmostEqual(YZY[1], 0, delta=1e-10) # chi self.assertAlmostEqual(YZY[2], 0, delta=1e-10) # phi self.assertAlmostEqual(peaks.getPeak(0).getWavelength(), 1.54, delta=1e-10)
q_lab = np.array([ -np.sin(theta) * np.cos(phi), -np.sin(theta) * np.sin(phi), 1 - np.cos(theta) ]) * k q_sample = np.dot(np.linalg.inv(R), q_lab) peaks = CreatePeaksWorkspace(OutputType="LeanElasticPeak", NumberOfPeaks=0) p = peaks.createPeakQSample(q_sample) peaks.addPeak(p) HFIRCalculateGoniometer(peaks, wl, OverrideProperty=True, InnerGoniometer=True) g = Goniometer() g.setR(peaks.getPeak(0).getGoniometerMatrix()) print(g.getEulerAngles('YZY')) assert np.isclose(g.getEulerAngles('YZY')[0], 42) chi = np.deg2rad(-3) phi = np.deg2rad(23) R1 = np.array([ [np.cos(omega), 0, -np.sin(omega)], # omega 0,1,0,-1 [0, 1, 0], [np.sin(omega), 0, np.cos(omega)] ]) R2 = np.array([ [np.cos(chi), np.sin(chi), 0], # chi 0,0,1,-1 [-np.sin(chi), np.cos(chi), 0], [0, 0, 1]
def PyExec(self): input_workspaces = self._expand_groups() outWS = self.getPropertyValue("OutputWorkspace") CreatePeaksWorkspace(OutputType='LeanElasticPeak', InstrumentWorkspace=input_workspaces[0], NumberOfPeaks=0, OutputWorkspace=outWS, EnableLogging=False) method = self.getProperty("Method").value n_bkgr_pts = self.getProperty("NumBackgroundPts").value n_fwhm = self.getProperty("WidthScale").value scale = self.getProperty("ScaleFactor").value chisqmax = self.getProperty("ChiSqMax").value signalNoiseMin = self.getProperty("SignalNoiseMin").value ll = self.getProperty("LowerLeft").value ur = self.getProperty("UpperRight").value startX = self.getProperty('StartX').value endX = self.getProperty('EndX').value use_lorentz = self.getProperty("ApplyLorentz").value optmize_q = self.getProperty("OptimizeQVector").value output_fit = self.getProperty("OutputFitResults").value if output_fit and method != "Counts": fit_results = WorkspaceGroup() AnalysisDataService.addOrReplace(outWS + "_fit_results", fit_results) for inWS in input_workspaces: tmp_inWS = '__tmp_' + inWS IntegrateMDHistoWorkspace(InputWorkspace=inWS, P1Bin=f'{ll[1]},{ur[1]}', P2Bin=f'{ll[0]},{ur[0]}', OutputWorkspace=tmp_inWS, EnableLogging=False) ConvertMDHistoToMatrixWorkspace(tmp_inWS, OutputWorkspace=tmp_inWS, EnableLogging=False) data = ConvertToPointData(tmp_inWS, OutputWorkspace=tmp_inWS, EnableLogging=False) run = mtd[inWS].getExperimentInfo(0).run() scan_log = 'omega' if np.isclose(run.getTimeAveragedStd('phi'), 0.0) else 'phi' scan_axis = run[scan_log].value scan_step = (scan_axis[-1] - scan_axis[0]) / (scan_axis.size - 1) data.setX(0, scan_axis) y = data.extractY().flatten() x = data.extractX().flatten() __tmp_pw = CreatePeaksWorkspace(OutputType='LeanElasticPeak', InstrumentWorkspace=inWS, NumberOfPeaks=0, EnableLogging=False) if method != "Counts": # fit against gaussian with flat background for both the Fitted and CountsWithFitting methods fit_result = self._fit_gaussian(inWS, data, x, y, startX, endX, output_fit) if fit_result and fit_result.OutputStatus == 'success' and fit_result.OutputChi2overDoF < chisqmax: B, A, peak_centre, sigma, _ = fit_result.OutputParameters.toDict( )['Value'] _, errA, _, errs, _ = fit_result.OutputParameters.toDict( )['Error'] if method == "Fitted": integrated_intensity = A * sigma * np.sqrt(2 * np.pi) # Convert correlation back into covariance cor_As = ( fit_result.OutputNormalisedCovarianceMatrix.cell( 1, 4) / 100 * fit_result.OutputParameters.cell(1, 2) * fit_result.OutputParameters.cell(3, 2)) # σ^2 = 2π (A^2 σ_s^2 + σ_A^2 s^2 + 2 A s σ_As) integrated_intensity_error = np.sqrt( 2 * np.pi * (A**2 * errs**2 + sigma**2 * errA**2 + 2 * A * sigma * cor_As)) elif method == "CountsWithFitting": y = y[slice( np.searchsorted( x, peak_centre - 2.3548 * sigma * n_fwhm / 2), np.searchsorted( x, peak_centre + 2.3548 * sigma * n_fwhm / 2))] # subtract out the fitted flat background integrated_intensity = (y.sum() - B * y.size) * scan_step integrated_intensity_error = np.sum( np.sqrt(y)) * scan_step # update the goniometer position based on the fitted peak center if scan_log == 'omega': SetGoniometer(Workspace=__tmp_pw, Axis0=f'{peak_centre},0,1,0,-1', Axis1='chi,0,0,1,-1', Axis2='phi,0,1,0,-1', EnableLogging=False) else: SetGoniometer(Workspace=__tmp_pw, Axis0='omega,0,1,0,-1', Axis1='chi,0,0,1,-1', Axis2=f'{peak_centre},0,1,0,-1', EnableLogging=False) else: self.log().warning( "Failed to fit workspace {}: Output Status={}, ChiSq={}" .format(inWS, fit_result.OutputStatus, fit_result.OutputChi2overDoF)) self._delete_tmp_workspaces(str(__tmp_pw), tmp_inWS) continue else: integrated_intensity, integrated_intensity_error = self._counts_integration( data, n_bkgr_pts, scan_step) # set the goniometer position to use the average of the scan SetGoniometer(Workspace=__tmp_pw, Axis0='omega,0,1,0,-1', Axis1='chi,0,0,1,-1', Axis2='phi,0,1,0,-1', EnableLogging=False) integrated_intensity *= scale integrated_intensity_error *= scale peak = __tmp_pw.createPeakHKL([ run['h'].getStatistics().median, run['k'].getStatistics().median, run['l'].getStatistics().median ]) peak.setWavelength(float(run['wavelength'].value)) peak.setIntensity(integrated_intensity) peak.setSigmaIntensity(integrated_intensity_error) if integrated_intensity / integrated_intensity_error > signalNoiseMin: __tmp_pw.addPeak(peak) # correct q-vector using CentroidPeaksMD if optmize_q: __tmp_q_ws = HB3AAdjustSampleNorm(InputWorkspaces=inWS, NormaliseBy='None', EnableLogging=False) __tmp_pw = CentroidPeaksMD(__tmp_q_ws, __tmp_pw, EnableLogging=False) DeleteWorkspace(__tmp_q_ws, EnableLogging=False) if use_lorentz: # ILL Neutron Data Booklet, Second Edition, Section 2.9, Part 4.1, Equation 7 peak = __tmp_pw.getPeak(0) lorentz = abs( np.sin(peak.getScattering() * np.cos(peak.getAzimuthal()))) peak.setIntensity(peak.getIntensity() * lorentz) peak.setSigmaIntensity(peak.getSigmaIntensity() * lorentz) CombinePeaksWorkspaces(outWS, __tmp_pw, OutputWorkspace=outWS, EnableLogging=False) if output_fit and method != "Counts": fit_results.addWorkspace( RenameWorkspace(tmp_inWS + '_Workspace', outWS + "_" + inWS + '_Workspace', EnableLogging=False)) fit_results.addWorkspace( RenameWorkspace(tmp_inWS + '_Parameters', outWS + "_" + inWS + '_Parameters', EnableLogging=False)) fit_results.addWorkspace( RenameWorkspace( tmp_inWS + '_NormalisedCovarianceMatrix', outWS + "_" + inWS + '_NormalisedCovarianceMatrix', EnableLogging=False)) fit_results.addWorkspace( IntegrateMDHistoWorkspace( InputWorkspace=inWS, P1Bin=f'{ll[1]},0,{ur[1]}', P2Bin=f'{ll[0]},0,{ur[0]}', P3Bin='0,{}'.format( mtd[inWS].getDimension(2).getNBins()), OutputWorkspace=outWS + "_" + inWS + "_ROI", EnableLogging=False)) else: self.log().warning( "Skipping peak from {} because Signal/Noise={:.3f} which is less than {}" .format(inWS, integrated_intensity / integrated_intensity_error, signalNoiseMin)) self._delete_tmp_workspaces(str(__tmp_pw), tmp_inWS) self.setProperty("OutputWorkspace", mtd[outWS])
def PyExec(self): input_workspaces = self._expand_groups() outWS = self.getPropertyValue("OutputWorkspace") CreatePeaksWorkspace(OutputType='LeanElasticPeak', InstrumentWorkspace=input_workspaces[0], NumberOfPeaks=0, OutputWorkspace=outWS, EnableLogging=False) scale = self.getProperty("ScaleFactor").value chisqmax = self.getProperty("ChiSqMax").value signalNoiseMin = self.getProperty("SignalNoiseMin").value ll = self.getProperty("LowerLeft").value ur = self.getProperty("UpperRight").value startX = self.getProperty('StartX').value endX = self.getProperty('EndX').value use_lorentz = self.getProperty("ApplyLorentz").value optmize_q = self.getProperty("OptimizeQVector").value output_fit = self.getProperty("OutputFitResults").value if output_fit: fit_results = WorkspaceGroup() AnalysisDataService.addOrReplace(outWS + "_fit_results", fit_results) for inWS in input_workspaces: tmp_inWS = '__tmp_' + inWS IntegrateMDHistoWorkspace(InputWorkspace=inWS, P1Bin=f'{ll[1]},{ur[1]}', P2Bin=f'{ll[0]},{ur[0]}', OutputWorkspace=tmp_inWS, EnableLogging=False) ConvertMDHistoToMatrixWorkspace(tmp_inWS, OutputWorkspace=tmp_inWS, EnableLogging=False) data = ConvertToPointData(tmp_inWS, OutputWorkspace=tmp_inWS, EnableLogging=False) run = mtd[inWS].getExperimentInfo(0).run() scan_log = 'omega' if np.isclose(run.getTimeAveragedStd('phi'), 0.0) else 'phi' scan_axis = run[scan_log].value data.setX(0, scan_axis) y = data.extractY().flatten() x = data.extractX().flatten() function = f"name=FlatBackground, A0={np.nanmin(y)};" \ f"name=Gaussian, PeakCentre={x[np.nanargmax(y)]}, Height={np.nanmax(y)-np.nanmin(y)}, Sigma=0.25" constraints = f"f0.A0 > 0, f1.Height > 0, {x.min()} < f1.PeakCentre < {x.max()}" try: fit_result = Fit(function, data, Output=str(data), IgnoreInvalidData=True, OutputParametersOnly=not output_fit, Constraints=constraints, StartX=startX, EndX=endX, EnableLogging=False) except RuntimeError as e: self.log().warning("Failed to fit workspace {}: {}".format( inWS, e)) continue if fit_result.OutputStatus == 'success' and fit_result.OutputChi2overDoF < chisqmax: __tmp_pw = CreatePeaksWorkspace(OutputType='LeanElasticPeak', InstrumentWorkspace=inWS, NumberOfPeaks=0, EnableLogging=False) _, A, x, s, _ = fit_result.OutputParameters.toDict()['Value'] _, errA, _, errs, _ = fit_result.OutputParameters.toDict( )['Error'] if scan_log == 'omega': SetGoniometer(Workspace=__tmp_pw, Axis0=f'{x},0,1,0,-1', Axis1='chi,0,0,1,-1', Axis2='phi,0,1,0,-1', EnableLogging=False) else: SetGoniometer(Workspace=__tmp_pw, Axis0='omega,0,1,0,-1', Axis1='chi,0,0,1,-1', Axis2=f'{x},0,1,0,-1', EnableLogging=False) peak = __tmp_pw.createPeakHKL([ run['h'].getStatistics().median, run['k'].getStatistics().median, run['l'].getStatistics().median ]) peak.setWavelength(float(run['wavelength'].value)) integrated_intensity = A * s * np.sqrt(2 * np.pi) * scale peak.setIntensity(integrated_intensity) # Convert correlation back into covariance cor_As = ( fit_result.OutputNormalisedCovarianceMatrix.cell(1, 4) / 100 * fit_result.OutputParameters.cell(1, 2) * fit_result.OutputParameters.cell(3, 2)) # σ^2 = 2π (A^2 σ_s^2 + σ_A^2 s^2 + 2 A s σ_As) integrated_intensity_error = np.sqrt( 2 * np.pi * (A**2 * errs**2 + s**2 * errA**2 + 2 * A * s * cor_As)) * scale peak.setSigmaIntensity(integrated_intensity_error) if integrated_intensity / integrated_intensity_error > signalNoiseMin: __tmp_pw.addPeak(peak) # correct q-vector using CentroidPeaksMD if optmize_q: __tmp_q_ws = HB3AAdjustSampleNorm(InputWorkspaces=inWS, NormaliseBy='None', EnableLogging=False) __tmp_pw = CentroidPeaksMD(__tmp_q_ws, __tmp_pw, EnableLogging=False) DeleteWorkspace(__tmp_q_ws, EnableLogging=False) if use_lorentz: # ILL Neutron Data Booklet, Second Edition, Section 2.9, Part 4.1, Equation 7 peak = __tmp_pw.getPeak(0) lorentz = abs( np.sin(peak.getScattering() * np.cos(peak.getAzimuthal()))) peak.setIntensity(peak.getIntensity() * lorentz) peak.setSigmaIntensity(peak.getSigmaIntensity() * lorentz) CombinePeaksWorkspaces(outWS, __tmp_pw, OutputWorkspace=outWS, EnableLogging=False) DeleteWorkspace(__tmp_pw, EnableLogging=False) if output_fit: fit_results.addWorkspace( RenameWorkspace(tmp_inWS + '_Workspace', outWS + "_" + inWS + '_Workspace', EnableLogging=False)) fit_results.addWorkspace( RenameWorkspace(tmp_inWS + '_Parameters', outWS + "_" + inWS + '_Parameters', EnableLogging=False)) fit_results.addWorkspace( RenameWorkspace(tmp_inWS + '_NormalisedCovarianceMatrix', outWS + "_" + inWS + '_NormalisedCovarianceMatrix', EnableLogging=False)) fit_results.addWorkspace( IntegrateMDHistoWorkspace( InputWorkspace=inWS, P1Bin=f'{ll[1]},0,{ur[1]}', P2Bin=f'{ll[0]},0,{ur[0]}', P3Bin='0,{}'.format( mtd[inWS].getDimension(2).getNBins()), OutputWorkspace=outWS + "_" + inWS + "_ROI", EnableLogging=False)) else: self.log().warning( "Skipping peak from {} because Signal/Noise={:.3f} which is less than {}" .format( inWS, integrated_intensity / integrated_intensity_error, signalNoiseMin)) else: self.log().warning( "Failed to fit workspace {}: Output Status={}, ChiSq={}". format(inWS, fit_result.OutputStatus, fit_result.OutputChi2overDoF)) for tmp_ws in (tmp_inWS, tmp_inWS + '_Workspace', tmp_inWS + '_Parameters', tmp_inWS + '_NormalisedCovarianceMatrix'): if mtd.doesExist(tmp_ws): DeleteWorkspace(tmp_ws, EnableLogging=False) self.setProperty("OutputWorkspace", mtd[outWS])