#result = breadth_first_search(problem2)
    #result = uniform_cost_search(problem2)
    #@result = astar_search(problem2, h=problem2.h_euclid)#manhattan)#y_distance)
    ftxt = open(file_name+'.txt','w')
    print "     Result=",result
    print "     expansions = ",problem2.expansion
    ftxt.write("expansions = "+str(problem2.expansion)+"\n")
    ftxt.write("max frontier = "+str(max_frontier_size)+"\n")
    if (result is not None):
       path = result.path()
       ftxt.write("path cost="+str(problem2.total_path_cost(path))+"\n")
       ftxt.write("Path="+str(path)+"\n")
       print "path cost=",problem2.total_path_cost(path)
       print "Path=",path
       print "Plotting path ..."
       map_loader.plotPath(path, 1.0)# scale)
       big_path = cv2.resize(map_loader.path, (0,0),fx=(1.0/scale), fy=(1.0/scale), interpolation=cv2.INTER_LINEAR)
       cv2.imshow("Path",big_path)
       cv2.imwrite(file_name+"_path.png",big_path)
    else:
        ftxt.write('no path!')
    ftxt.close()

    print "     Close the video ..."
    problem2.video_encoder.release()


    cv2.waitKey(500)

print "Done! - press return to exit"
cv2.waitKey(5000)
def fullPath():
    # This is the main part of the demo program
    map_loader = MapLoader() # Create a MapLoader to load the world map from a simple image

    base_image = "simple"  # This is the base file name of the input image for map generation
    map_loader.addFrame("/home/kinova/MillenCapstone/MadalynMillenCapstone/animation/","config_space_bw.png")

    scale = 0.1
    map_loader.createMap(scale) # Discretize the map based on the the scaling factor

    # Create a big version of discretized map for better visualization
    big_map = resize(map_loader.map, (0,0),fx=(1.0/scale), fy=(1.0/scale), interpolation=INTER_NEAREST)

    imshow("Image",map_loader.image)
    imshow("Map",  map_loader.map)
    imshow("Big",  big_map)

    target_dir = "output"
    if not os.path.exists(target_dir):
        print "Creating target directory <",target_dir,"> ..."
        try:   os.makedirs(target_dir)
        except:
            print "Failed to create target path!"
            exit()

    print "Writing the base images ..."
    imwrite(target_dir+"/"+base_image+"_img.png",map_loader.image)
    imwrite(target_dir+"/"+base_image+"_map.png",map_loader.map)
    imwrite(target_dir+"/"+base_image+"_big_map.png",big_map)

    print "Wait for key input..."
    #waitKey()


    print "Doing the search ..."
    grid = UndirectedGraph()  # Using Russell and Norvig code

    start=(13,20)
    goal=(16,30)


    # Define the test cases we want to run
    tests = [("depth_first_",  depth_first_graph_search),
             ("breadth_first_",breadth_first_search),
             ("uniform_cost_", uniform_cost_search)]
    '''("astar_search_euclid_",    astar_search,0),
             ("astar_search_euclid2_",   astar_search,4),
             ("astar_search_euclid3_",   astar_search,5),
             ("astar_search_euclid025_", astar_search,6),
             ("astar_search_euclid05_",  astar_search,7),
             ("astar_search_dx_",        astar_search,1),
             ("astar_search_dy_",        astar_search,2),
             ("astar_search_manhattan_", astar_search,3),
             ("greedy_search_euclid_",   greedy_best_first_graph_search,0),
             ("greedy_search_dx_",       greedy_best_first_graph_search,1),
             ("greedy_search_dy_",       greedy_best_first_graph_search,2),
             ("greedy_search_manhattan_",greedy_best_first_graph_search,3)  ]'''
    paths = []
    smallPath = []
    smallestPath = float('inf')
    radPoint = 0.123
    radAdd = np.pi / 8
    for test in tests:
        print "Set up the "+test[0]+" ..."
        file_name = target_dir+"/"+test[0]+base_image
        video_encoder = VideoEncoder(file_name, map_loader.map, frame_rate = 30.0, fps_factor=1.0, comp_height=1.0/scale, comp_width=2.0/scale)

        print "     output to ",file_name
        problem2 = GridProblem(start, goal, grid, map_loader.map,scale,video_encoder)

        # Load the correct grid search algorithm and heuristics
        print "------------- call ---------------------"
        if (len(test) > 2):
            if (test[2] == 0):
               result, max_frontier_size = test[1](problem2, problem2.h_euclid)
            #
            elif (test[2] == 1):
               result, max_frontier_size = test[1](problem2, problem2.h_x_distance)
            #
            elif (test[2] == 2):
               result, max_frontier_size = test[1](problem2, problem2.h_y_distance)
            #
            elif (test[2] == 3):
               result, max_frontier_size = test[1](problem2, problem2.h_manhattan)
            #
            elif (test[2] == 4):
               result, max_frontier_size = test[1](problem2, problem2.h_euclid2)
            #
            elif (test[2] == 5):
               result, max_frontier_size = test[1](problem2, problem2.h_euclid3)
            #
            elif (test[2] == 6):
               result, max_frontier_size = test[1](problem2, problem2.h_euclid025)
            #
            elif (test[2] == 7):
               result, max_frontier_size = test[1](problem2, problem2.h_euclid05)
            #
            else:
               print "Help",test[2]
        else:
           result, max_frontier_size = test[1](problem2)
        #result,max_frontier_size=depth_first_graph_search(problem2)
        print "-------------return---------------------"


        #result = depth_first_graph_search(problem2)
        #result = breadth_first_search(problem2)
        #result = uniform_cost_search(problem2)
        #@result = astar_search(problem2, h=problem2.h_euclid)#manhattan)#y_distance)
        ftxt = open(file_name+'.txt','w')
        print "     Result=",result
        print "     expansions = ",problem2.expansion
        ftxt.write("expansions = "+str(problem2.expansion)+"\n")
        ftxt.write("max frontier = "+str(max_frontier_size)+"\n")
        if (result is not None):
           path = result.path()
           ftxt.write("path cost="+str(problem2.total_path_cost(path))+"\n")
           ftxt.write("Path="+str(path)+"\n")
           print "path cost=",problem2.total_path_cost(path)
           print "Path=",path
           print "Plotting path ..."
           map_loader.plotPath(path, 1.0)# scale)
           big_path = resize(map_loader.path, (0,0),fx=(1.0/scale), fy=(1.0/scale), interpolation=INTER_LINEAR)
           imshow("Path",big_path)
           imwrite(file_name+"_path.png",big_path)
           if len(path) < smallestPath:
               smallPath = path
               smallestPath = len(path)
        else:
            ftxt.write('no path!')
        ftxt.close()

        print "     Close the video ..."
        problem2.video_encoder.release()

        waitKey(500)
    for p in smallPath:
        paths.append((radPoint, ((math.atan(float(p.state[1])/ float(p.state[0]))) * (np.pi / 180)) - radPoint))
        print (float(p.state[1])/ float(p.state[0]))
        if radPoint < 3.11:
            radPoint = radPoint + radAdd
    return paths
예제 #3
0
    #result = breadth_first_search(problem2)
    #result = uniform_cost_search(problem2)
    #@result = astar_search(problem2, h=problem2.h_euclid)#manhattan)#y_distance)
    ftxt = open(file_name+'.txt','w')
    print "     Result=",result
    print "     expansions = ",problem2.expansion
    ftxt.write("expansions = "+str(problem2.expansion)+"\n")
    ftxt.write("max frontier = "+str(max_frontier_size)+"\n")
    if (result is not None):
       path = result.path()
       ftxt.write("path cost="+str(problem2.total_path_cost(path))+"\n")
       ftxt.write("Path="+str(path)+"\n")
       print "path cost=",problem2.total_path_cost(path)
       print "Path=",path
       print "Plotting path ..."
       map_loader.plotPath(path, 1.0)# scale)
       big_path = cv2.resize(map_loader.path, (0,0),fx=(1.0/scale), fy=(1.0/scale), interpolation=cv2.INTER_LINEAR)
       cv2.imshow("Path",big_path)
       cv2.imwrite(file_name+"_path.png",big_path)
    else:
        ftxt.write('no path!')
    ftxt.close()

    print "     Close the video ..."
    problem2.video_encoder.release()


    cv2.waitKey(500)