def test_dissimilarity_fake(self): """ Compare dissimalirity values computed by hands """ city = fake_city() d = mb.dissimilarity(city) d_answer = {1: {1:0.0, 2:0.5205882352941176, 3:0.411764705882353}, 2: {1:0.5205882352941176, 2:0.0, 3:0.4411764705882353}, 3: {1:0.411764705882353, 2:0.4411764705882353, 3:0.0}} for c0 in d: for c1 in d[c0]: assert_equal(d[c0][c1], d_answer[c0][c1])
def test_dissimilarity_segregated_city(self): """ 1 in the segregated city """ city = segregated_city() d = mb.dissimilarity(city) d_answer = {1:{1:0, 2:1, 3:1}, 2:{1:1, 2:0, 3:1}, 3:{1:1, 2:1, 3:0}} for c0 in d: for c1 in d[c0]: assert_equal(d[c0][c1], d_answer[c0][c1])
def test_dissimilarity_uniform_city(self): """ Null values in the uniform city """ city = uniform_city() d = mb.dissimilarity(city) d_answer = {1:{1:0, 2:0, 3:0}, 2:{1:0, 2:0, 3:0}, 3:{1:0, 2:0, 3:0}} for c0 in d: for c1 in d[c0]: assert_equal(d[c0][c1], d_answer[c0][c1])
def test_dissimilarity_uniform_city(self): """ Null values in the uniform city """ city = uniform_city() d = mb.dissimilarity(city) d_answer = { 1: { 1: 0, 2: 0, 3: 0 }, 2: { 1: 0, 2: 0, 3: 0 }, 3: { 1: 0, 2: 0, 3: 0 } } for c0 in d: for c1 in d[c0]: assert_equal(d[c0][c1], d_answer[c0][c1])
def test_dissimilarity_fake(self): """ Compare dissimalirity values computed by hands """ city = fake_city() d = mb.dissimilarity(city) d_answer = { 1: { 1: 0.0, 2: 0.5205882352941176, 3: 0.411764705882353 }, 2: { 1: 0.5205882352941176, 2: 0.0, 3: 0.4411764705882353 }, 3: { 1: 0.411764705882353, 2: 0.4411764705882353, 3: 0.0 } } for c0 in d: for c1 in d[c0]: assert_equal(d[c0][c1], d_answer[c0][c1])
def test_dissimilarity_segregated_city(self): """ 1 in the segregated city """ city = segregated_city() d = mb.dissimilarity(city) d_answer = { 1: { 1: 0, 2: 1, 3: 1 }, 2: { 1: 1, 2: 0, 3: 1 }, 3: { 1: 1, 2: 1, 3: 0 } } for c0 in d: for c1 in d[c0]: assert_equal(d[c0][c1], d_answer[c0][c1])