예제 #1
0
def air_path(aircraft, nei, altp, disa, speed_mode, speed, mass, rating):
    """
    Retrieves air path in various conditions
    """

    g = earth.gravity()

    [pamb, tamb, tstd, dtodz] = earth.atmosphere(altp, disa)

    mach = get_mach(pamb, speed_mode, speed)

    fn, data = propu.thrust(aircraft, pamb, tamb, mach, rating, nei)

    cz = lift_from_speed(aircraft, pamb, mach, mass)

    [cx, lod] = aero.drag(aircraft, pamb, tamb, mach, cz)

    if (nei > 0):
        dcx = propu.oei_drag(aircraft, pamb, mach)
        cx = cx + dcx * nei
        lod = cz / cx

    acc_factor = earth.climb_mode(speed_mode, dtodz, tstd, disa, mach)

    slope = (fn / (mass * g) - 1 / lod) / acc_factor

    vsnd = earth.sound_speed(tamb)

    v_z = mach * vsnd * slope

    return slope, v_z
예제 #2
0
def acceleration(aircraft, nei, altp, disa, speed_mode, speed, mass, rating):
    """
    Aircraft acceleration on level flight
    """

    wing = aircraft.wing
    gam = earth.heat_ratio()

    [pamb, tamb, tstd, dtodz] = earth.atmosphere(altp, disa)

    mach = get_mach(pamb, speed_mode, speed)

    fn, Data = propu.thrust(aircraft, pamb, tamb, mach, rating, nei)

    cz = lift_from_speed(aircraft, pamb, mach, mass)

    cx, lod = aero.drag(aircraft, pamb, tamb, mach, cz)

    if (nei > 0):
        dcx = propu.oei_drag(aircraft, pamb, mach)
        cx = cx + dcx * nei

    acc = (fn - 0.5 * gam * pamb * mach**2 * wing.area * cx) / mass

    return acc
예제 #3
0
def forward_cg_stall(aircraft, altp, disa, nei, hld_conf, speed_mode, mass):
    """
    Computes max forward trimmable CG position at stall speed
    """

    wing = aircraft.wing
    htp = aircraft.horizontal_tail

    gam = earth.heat_ratio()

    [pamb, tamb, tstd, dtodz] = earth.atmosphere(altp, disa)

    [cz_max_wing, cz0] = airplane_aero.high_lift(
        wing, hld_conf)  # Wing maximum lift coefficient without margin

    [cza_htp, xlc_htp, aoa_max_htp,
     ki_htp] = frame_aero.htp_aero_data(aircraft)

    cz_max_htp = cza_htp * aoa_max_htp

    c_z = cz_max_wing - cz_max_htp  # Max forward Cg assumed, HTP has down lift

    mach = flight.speed_from_lift(aircraft, pamb, c_z, mass)

    [cza_wo_htp, xlc_wo_htp,
     ki_wing] = frame_aero.wing_aero_data(aircraft, mach, hld_conf)

    if (nei > 0):
        dcx_oei = nei * propu.oei_drag(pamb, mach)
    else:
        dcx_oei = 0

    dw_angle = frame_aero.wing_downwash(
        aircraft, cz_max_wing)  # Downwash angle due to the wing
    cx_basic, lod_trash = airplane_aero.drag(
        aircraft, pamb, tamb, mach,
        cz_max_wing)  # By definition of the drag_ function
    cxi_htp = (ki_htp * cz_max_htp**2) * (htp.area / wing.area
                                          )  # Induced drag generated by HTP
    cx_inter = cz_max_htp * dw_angle  # Interaction drag (due to downwash)
    cx_trimmed = cx_basic + cxi_htp + cx_inter + dcx_oei

    fn = 0.5 * gam * pamb * mach**2 * wing.area * cx_trimmed

    cm_prop = propu.thrust_pitch_moment(aircraft, fn, pamb, mach, dcx_oei)

    cg_max_fwd_stall = (cm_prop + xlc_wo_htp * cz_max_wing -
                        xlc_htp * cz_max_htp) / (cz_max_wing - cz_max_htp)

    aoa_wing = (cz_max_wing - cz0) / cza_wo_htp  # Wing angle of attack
    aoa = aoa_wing - wing.setting  # Reference angle of attack (fuselage axis versus air speed)
    ih = -aoa + dw_angle - aoa_max_htp  # HTP trim setting

    speed = flight.get_speed(pamb, speed_mode, mach)

    return cg_max_fwd_stall, speed, fn, aoa, ih, c_z, cx_trimmed
예제 #4
0
 def fct_max_path(cz, aircraft, nei, altp, disa, speed_mode, mass, rating,
                  isformax):
     pamb, tamb, tstd, dtodz = earth.atmosphere(altp, disa)
     mach = speed_from_lift(aircraft, pamb, cz, mass)
     speed = get_speed(pamb, speed_mode, mach)
     [slope, vz] = air_path(aircraft, nei, altp, disa, speed_mode, speed,
                            mass, rating)
     if (isformax == True):
         return slope
     elif (isformax == False):
         return slope, vz, speed
예제 #5
0
def ceilings(aircraft, toc, oei_ceil):

    design_driver = aircraft.design_driver
    propulsion = aircraft.propulsion
    weights = aircraft.weights

    (MTO, MCN, MCL, MCR, FID) = propulsion.rating_code

    disa = 15

    # propulsion ceilings
    #-----------------------------------------------------------------------------------------------------------
    nei = 0
    altp = toc
    speed_mode = 2  # WARNING : iso Mach climb mode
    speed = design_driver.cruise_mach

    mass = 0.97 * weights.mtow

    rating = MCL  # Max Climb

    slope, vz_clb = flight.air_path(aircraft, nei, altp, disa, speed_mode,
                                    speed, mass, rating)

    rating = MCR  # Max Cruise

    slope, vz_crz = flight.air_path(aircraft, nei, altp, disa, speed_mode,
                                    speed, mass, rating)

    # One engine inoperative ceiling
    #-----------------------------------------------------------------------------------------------------------
    nei = 1
    altp = oei_ceil
    speed_mode = 2  # WARNING : iso Mach climb mode

    pamb, tamb, tstd, dtodz = earth.atmosphere(altp, disa)
    speed = earth.vcas_from_mach(pamb, design_driver.cruise_mach)

    mass = 0.95 * weights.mtow

    rating = MCN

    oei_slope, vz, oei_mach, cz = flight.max_path(aircraft, nei, altp, disa,
                                                  speed_mode, mass, rating)

    #-----------------------------------------------------------------------------------------------------------
    return vz_clb, vz_crz, oei_slope, oei_mach
예제 #6
0
def approach_speed(aircraft, altp, disa, mass, hld_conf):
    """
    Minimum approach speed (VLS)
    """

    wing = aircraft.wing

    g = earth.gravity()

    czmax, trash = airplane_aero.high_lift(wing, hld_conf)

    stall_margin = regul.kvs1g_min_landing()

    [pamb, tamb, tstd, dtodz] = earth.atmosphere(altp, disa)

    [rho, sig] = earth.air_density(pamb, tamb)

    vapp = numpy.sqrt(
        (mass * g) / (0.5 * rho * wing.area * (czmax / stall_margin**2)))

    return vapp
예제 #7
0
def take_off(aircraft, kvs1g, altp, disa, mass, hld_conf):
    """
    Take off field length and climb path at 35 ft depending on stall margin (kVs1g)
    """

    wing = aircraft.wing
    propulsion = aircraft.propulsion

    (MTO, MCN, MCL, MCR, FID) = propulsion.rating_code

    czmax, cz_0 = airplane_aero.high_lift(wing, hld_conf)

    rating = MTO

    [pamb, tamb, tstd, dtodz] = earth.atmosphere(altp, disa)

    [rho, sig] = earth.air_density(pamb, tamb)

    cz_to = czmax / kvs1g**2

    mach = flight.speed_from_lift(aircraft, pamb, cz_to, mass)

    nei = 0  # For Magic Line factor computation

    fn, trash = propu.thrust(aircraft, pamb, tamb, mach, rating, nei)

    ml_factor = mass**2 / (cz_to * fn * wing.area * sig**0.8
                           )  # Magic Line factor

    tofl = 15.5 * ml_factor + 100.

    nei = 1  # For 2nd segment computation
    speed_mode = 1
    speed = flight.get_speed(pamb, speed_mode, mach)

    seg2path, vz = flight.air_path(aircraft, nei, altp, disa, speed_mode,
                                   speed, mass, rating)

    return seg2path, tofl
예제 #8
0
def specific_air_range(aircraft, altp, mass, mach, disa):

    propulsion = aircraft.propulsion

    (MTO, MCN, MCL, MCR, FID) = propulsion.rating_code

    g = earth.gravity()

    pamb, tamb, tstd, dtodz = earth.atmosphere(altp, disa)

    vsnd = earth.sound_speed(tamb)

    Cz = flight.lift_from_speed(aircraft, pamb, mach, mass)

    [Cx, LoD] = airplane_aero.drag(aircraft, pamb, tamb, mach, Cz)

    nei = 0.

    sfc = propu.sfc(aircraft, pamb, tamb, mach, MCR, nei)

    sar = (vsnd * mach * LoD) / (mass * g * sfc)

    return sar
예제 #9
0
def vertical_tail_sizing(aircraft):
    """
    Computes necessary VTP area variation to meet engine failure case constraint
    Influence of CG position is ignored
    """

    design_driver = aircraft.design_driver
    propulsion = aircraft.propulsion
    wing = aircraft.wing
    vtp = aircraft.vertical_tail
    aerodynamics = aircraft.aerodynamics
    payload = aircraft.payload
    c_of_g = aircraft.center_of_gravity

    (MTO, MCN, MCL, MCR, FID) = propulsion.rating_code

    cyb_vtp, xlc_vtp, aoa_max_vtp, ki_vtp = frame_aero.vtp_aero_data(aircraft)

    payload = 0.5 * payload.nominal  # Light payload
    range = design_driver.design_range / 15  # Short mission
    altp = design_driver.ref_cruise_altp
    mach = design_driver.cruise_mach
    disa = 30  # Hot condition

    tow, block_fuel, block_time, total_fuel = sub_proc.mission_tow(
        aircraft, payload, range, altp, mach, disa)

    altp = 0
    disa = 15

    pamb, tamb, tstd, dtodz = earth.atmosphere(altp, disa)

    stall_margin = regul.kvs1g_min_take_off()

    czmax_to = aerodynamics.cz_max_to

    mach_s1g = flight.speed_from_lift(aircraft, pamb, czmax_to, tow)

    mach_35ft = stall_margin * mach_s1g  # V2 speed

    mach_mca = mach_35ft / 1.1  #Approximation of required VMCA

    altp = 0
    disa = 15

    nei = 1

    pamb, tamb, tstd, dtodz = earth.atmosphere(altp, disa)

    fn, data = propu.thrust(aircraft, pamb, tamb, mach_mca, MTO, nei)

    dcx_oei = propu.oei_drag(aircraft, pamb, tamb)

    cn_prop = propu.thrust_yaw_moment(aircraft, fn, pamb, mach_mca, dcx_oei)

    max_bwd_req_cg = xlc_vtp - (cn_prop * wing.mac) / (cyb_vtp * aoa_max_vtp)

    c_of_g.max_bwd_oei_req_cg = c_of_g.max_bwd_req_cg
    c_of_g.max_bwd_oei_cg = max_bwd_req_cg
    c_of_g.max_bwd_oei_mass = tow

    return
예제 #10
0
    eff_chain = aircraft.power_elec_chain.overall_efficiency

    kBLIe = aircraft.propulsion.bli_e_thrust_factor  # Thrust increase due to BLI at iso shaft power for the e-fan

    eff_h = kC + (1 - kC) * (kW * kBLIe * (eff_e_prop / eff_prop) * eff_chain +
                             (1 - kW))
    sfc_factor = 1. / eff_h  # factor on cruise SFC due to rear fuselage electric nacelle with bli

    #------------------------------------------------------------------------------------------------------
    shaft_power = aircraft.electric_engine.mcr_e_shaft_power

    disa = 0.
    altp = aircraft.design_driver.ref_cruise_altp
    mach = aircraft.design_driver.cruise_mach

    (pamb, tamb, tstd, dt_o_dz) = earth.atmosphere(altp, disa)

    (e_fan_thrust, q_air,
     dv_bli) = jet.fan_thrust_with_bli(aircraft.electric_nacelle, pamb, tamb,
                                       mach, shaft_power)

    vair = mach * earth.sound_speed(tamb)

    kVbli = dv_bli / vair

    # Print some results
    #------------------------------------------------------------------------------------------------------
    print("-------------------------------------------")
    print("Global mass of electric chain = ", "%.0f" % global_e_mass, " kg")
    print("Electric fan length = ", "%.2f" % aircraft.electric_nacelle.length,
          " m")
예제 #11
0
def eval_propulsion_design(aircraft):
    """
    Propulsion architecture design
    """

    propulsion = aircraft.propulsion

    propulsion.rating_code = (0,1,2,3,4)

    if (propulsion.architecture==1):

        engine = aircraft.turbofan_engine

        eval_turbofan_engine_design(aircraft)
        eval_turbofan_nacelle_design(aircraft)

    elif (propulsion.architecture==2):

        engine = aircraft.turbofan_engine

        eval_turbofan_engine_design(aircraft)
        eval_hybrid_engine_design(aircraft)
        eval_hybrid_nacelle_design(aircraft)

    else:
        raise Exception("propulsion.architecture index is out of range")


    (MTO,MCN,MCL,MCR,FID) = propulsion.rating_code

    disa = 15.
    altp = 0.
    mach = 0.25
    nei = 0.

    (pamb,tamb,tstd,dtodz) = earth.atmosphere(altp,disa)

    (Fn,Data) = propu.thrust(aircraft,pamb,tamb,mach,MTO,nei)

    propulsion.reference_thrust_effective = (Fn/engine.n_engine)/0.80
    propulsion.mto_thrust_ref = Fn/engine.n_engine


    disa = aircraft.low_speed.disa_oei
    altp = aircraft.low_speed.req_oei_altp
    mach = 0.5*aircraft.design_driver.cruise_mach
    nei = 1.

    (pamb,tamb,tstd,dtodz) = earth.atmosphere(altp,disa)

    (Fn,Data) = propu.thrust(aircraft,pamb,tamb,mach,MCN,nei)

    propulsion.mcn_thrust_ref = Fn/(engine.n_engine-nei)


    disa = 0.
    altp = aircraft.design_driver.ref_cruise_altp
    mach = aircraft.design_driver.cruise_mach
    nei = 0.

    (pamb,tamb,tstd,dtodz) = earth.atmosphere(altp,disa)

    propulsion.sfc_cruise_ref = propu.sfc(aircraft,pamb,tamb,mach,MCR,nei)

    if (propulsion.architecture==1):

        sec = 0.

    elif (propulsion.architecture==2):

        fn,sec,data = propu.hybrid_thrust(aircraft,pamb,tamb,mach,MCR,nei)

    else:
        raise Exception("propulsion.architecture index is out of range")

    propulsion.sec_cruise_ref = sec

    (Fn,Data) = propu.thrust(aircraft,pamb,tamb,mach,FID,nei)

    propulsion.fid_thrust_ref = Fn/engine.n_engine


    disa = 0.
    altp = aircraft.design_driver.top_of_climb_altp
    mach = aircraft.design_driver.cruise_mach
    nei = 0.

    (pamb,tamb,tstd,dtodz) = earth.atmosphere(altp,disa)

    (Fn,Data) = propu.thrust(aircraft,pamb,tamb,mach,MCL,nei)

    propulsion.mcl_thrust_ref = Fn/engine.n_engine

    (Fn,Data) = propu.thrust(aircraft,pamb,tamb,mach,MCR,nei)

    propulsion.mcr_thrust_ref = Fn/engine.n_engine

    return
예제 #12
0
def eval_wing_design(aircraft):
    """
    Wing predesign
    """

    design_driver = aircraft.design_driver
    fuselage = aircraft.fuselage
    vtp = aircraft.vertical_tail
    nacelle = aircraft.turbofan_nacelle
    weights = aircraft.weights

    c_g = aircraft.center_of_gravity
    wing = aircraft.wing

    wing.t_o_c_t = 0.10
    wing.t_o_c_k = wing.t_o_c_t + 0.01
    wing.t_o_c_r = wing.t_o_c_k + 0.03

    wing.sweep = 1.6 * max(0,
                           (design_driver.cruise_mach - 0.5))  # Empirical law

    wing.dihedral = unit.rad_deg(5)

    if (wing.morphing == 1):  # Aspect ratio is driving parameter
        wing.span = numpy.sqrt(wing.aspect_ratio * wing.area)
    elif (wing.morphing == 2):  # Span is driving parameter
        wing.aspect_ratio = wing.span**2 / wing.area
    else:
        print("geometry_predesign_, wing_morphing index is unkown")

    # Correlation between span loading and tapper ratio
    wing.taper_ratio = 0.3 - 0.025 * (1e-3 * weights.mtow / wing.span)

    # Factor 1.64 accounts for the part of HTP ref area hidden in the fuselage
    wing.net_wetted_area = 1.64 * wing.area

    wing.y_kink = 0.7 * fuselage.width + 1.4 * nacelle.width  # statistical regression
    wing.y_root = 0.5 * fuselage.width
    wing.y_tip = 0.5 * wing.span

    if (15 < unit.deg_rad(wing.sweep)):  # With kink
        Phi100intTE = max(0, 2 * (wing.sweep - unit.rad_deg(32)))
        tan_phi100 = numpy.tan(Phi100intTE)
        A = ((1 - 0.25 * wing.taper_ratio) * wing.y_kink +
             0.25 * wing.taper_ratio * wing.y_root - wing.y_tip) / (
                 0.75 * wing.y_kink + 0.25 * wing.y_root - wing.y_tip)
        B = (numpy.tan(wing.sweep) - tan_phi100) * (
            (wing.y_tip - wing.y_kink) *
            (wing.y_kink - wing.y_root)) / (0.25 * wing.y_root +
                                            0.75 * wing.y_kink - wing.y_tip)
        wing.c_root = (wing.area - B * (wing.y_tip - wing.y_root)) / (
            wing.y_root + wing.y_kink + A *
            (wing.y_tip - wing.y_root) + wing.taper_ratio *
            (wing.y_tip - wing.y_kink))
        wing.c_kink = A * wing.c_root + B
        wing.c_tip = wing.taper_ratio * wing.c_root

    else:  # Without kink
        wing.c_root = 2 * wing.area / (
            2 * wing.y_root * (1 - wing.taper_ratio) +
            (1 + wing.taper_ratio) * numpy.sqrt(wing.aspect_ratio * wing.area))
        wing.c_tip = wing.taper_ratio * wing.c_root
        wing.c_kink = ((wing.y_tip - wing.y_kink) * wing.c_root +
                       (wing.y_kink - wing.y_root) * wing.c_tip) / (
                           wing.y_tip - wing.y_root)

    tan_phi0 = 0.25 * (wing.c_kink - wing.c_tip) / (
        wing.y_tip - wing.y_kink) + numpy.tan(wing.sweep)

    wing.mac = 2.*(3*wing.y_root*wing.c_root**2 \
            +(wing.y_kink-wing.y_root)*(wing.c_root**2+wing.c_kink**2+wing.c_root*wing.c_kink) \
            +(wing.y_tip-wing.y_kink)*(wing.c_kink**2+wing.c_tip**2+wing.c_kink*wing.c_tip) \
            )/(3*wing.area)

    wing.y_mac = ( 3*wing.c_root*wing.y_root**2 \
              +(wing.y_kink-wing.y_root)*(wing.c_kink*(wing.y_root+wing.y_kink*2.)+wing.c_root*(wing.y_kink+wing.y_root*2.)) \
              +(wing.y_tip-wing.y_kink)*(wing.c_tip*(wing.y_kink+wing.y_tip*2.)+wing.c_kink*(wing.y_tip+wing.y_kink*2.)) \
              )/(3*wing.area)

    x_mac_local = ( (wing.y_kink-wing.y_root)*tan_phi0*((wing.y_kink-wing.y_root)*(wing.c_kink*2.+wing.c_root) \
                   +(wing.y_tip-wing.y_kink)*(wing.c_kink*2.+wing.c_tip))+(wing.y_tip-wing.y_root)*tan_phi0*(wing.y_tip-wing.y_kink)*(wing.c_tip*2.+wing.c_kink) \
                  )/(3*wing.area)

    wing.x_root = vtp.x_mac + 0.25 * vtp.mac - vtp.lever_arm - 0.25 * wing.mac - x_mac_local

    wing.x_kink = wing.x_root + (wing.y_kink - wing.y_root) * tan_phi0
    wing.x_tip = wing.x_root + (wing.y_tip - wing.y_root) * tan_phi0

    wing.x_mac = wing.x_root+( (wing.x_kink-wing.x_root)*((wing.y_kink-wing.y_root)*(wing.c_kink*2.+wing.c_root) \
                        +(wing.y_tip-wing.y_kink)*(wing.c_kink*2.+wing.c_tip))+(wing.x_tip-wing.x_root)*(wing.y_tip-wing.y_kink)*(wing.c_tip*2.+wing.c_kink) \
                       )/(wing.area*3.)
    if (wing.attachment == 1):
        wing.z_root = 0
    else:
        wing.z_root = fuselage.height - 0.5 * wing.t_o_c_r * wing.c_root

    wing.z_kink = wing.z_root + (wing.y_kink - wing.y_root) * numpy.tan(
        wing.dihedral)
    wing.z_tip = wing.z_root + (wing.y_tip - wing.y_root) * numpy.tan(
        wing.dihedral)

    # Wing setting
    #-----------------------------------------------------------------------------------------------------------
    g = earth.gravity()
    gam = earth.heat_ratio()

    disa = 0
    rca = design_driver.ref_cruise_altp
    mach = design_driver.cruise_mach
    mass = 0.95 * weights.mtow

    pamb, tamb, tstd, dtodz = earth.atmosphere(rca, disa)

    cza_wo_htp = frame_aero.cza_wo_htp(mach, fuselage.width, wing.aspect_ratio,
                                       wing.span, wing.sweep)

    # AoA = 2.5° at cruise start
    wing.setting = (0.97 * mass * g) / (0.5 * gam * pamb * mach**2 * wing.area
                                        * cza_wo_htp) - unit.rad_deg(2.5)

    return
예제 #13
0
def mission(aircraft, dist_range, tow, altp, mach, disa):
    """
    Mission computation using breguet equation, fixed L/D and fixed sfc
    """

    engine = aircraft.turbofan_engine
    propulsion = aircraft.propulsion
    battery = aircraft.battery

    (MTO, MCN, MCL, MCR, FID) = propulsion.rating_code

    g = earth.gravity()

    pamb, tamb, tstd, dtodz = earth.atmosphere(altp, disa)
    vsnd = earth.sound_speed(tamb)
    tas = vsnd * mach

    lod_max, cz_lod_max = airplane_aero.lod_max(aircraft, pamb, tamb, mach)

    lod_cruise = 0.95 * lod_max

    nei = 0.

    sfc = propu.sfc(aircraft, pamb, tamb, mach, MCR, nei)

    if (propulsion.architecture == 2):
        fn, sec, data = propu.hybrid_thrust(aircraft, pamb, tamb, mach, MCR,
                                            nei)
    if (propulsion.architecture == 3):
        fn, sec, data = propu.hybrid_thrust(aircraft, pamb, tamb, mach, MCR,
                                            nei)

    # Departure ground phases
    #-----------------------------------------------------------------------------------------------------------
    fuel_taxi_out = (34 + 2.3e-4 * engine.reference_thrust) * engine.n_engine
    time_taxi_out = 540

    fuel_take_off = 1e-4 * (2.8 + 2.3 / engine.bpr) * tow
    time_take_off = 220 * tow / (engine.reference_thrust * engine.n_engine)

    # Mission leg
    #-----------------------------------------------------------------------------------------------------------
    if (propulsion.architecture == 1):
        fuel_mission = tow * (1 - numpy.exp(-(sfc * g * dist_range) /
                                            (tas * lod_cruise)))
    elif (propulsion.architecture == 2):
        fuel_mission = tow*(1-numpy.exp(-(sfc*g*dist_range)/(tas*lod_cruise))) \
                        - (sfc/sec)*battery.energy_cruise
    elif (propulsion.architecture == 3):
        fuel_mission = tow*(1-numpy.exp(-(sfc*g*dist_range)/(tas*lod_cruise))) \
                        - (sfc/sec)*battery.energy_cruise
    elif (propulsion.architecture == 4):
        fuel_mission = tow * (1 - numpy.exp(-(sfc * g * dist_range) /
                                            (tas * lod_cruise)))
    else:
        raise Exception("propulsion.architecture index is out of range")

    time_mission = 1.09 * (dist_range / tas)

    l_w = tow - fuel_mission

    # Arrival ground phases
    #-----------------------------------------------------------------------------------------------------------
    fuel_landing = 1e-4 * (0.5 + 2.3 / engine.bpr) * l_w
    time_landing = 180

    fuel_taxi_in = (26 + 1.8e-4 * engine.reference_thrust) * engine.n_engine
    time_taxi_in = 420

    # Block fuel and time
    #-----------------------------------------------------------------------------------------------------------
    block_fuel = fuel_taxi_out + fuel_take_off + fuel_mission + fuel_landing + fuel_taxi_in
    time_block = time_taxi_out + time_take_off + time_mission + time_landing + time_taxi_in

    # Diversion and holding reserve fuel
    #-----------------------------------------------------------------------------------------------------------
    fuel_diversion = l_w * (1 -
                            numpy.exp(-(sfc * g * regul.diversion_range()) /
                                      (tas * lod_cruise)))

    fuel_holding = sfc * (l_w * g / lod_max) * regul.holding_time()

    # Total
    #-----------------------------------------------------------------------------------------------------------
    design_range = aircraft.design_driver.design_range

    fuel_total = fuel_mission * (1 + regul.reserve_fuel_ratio(design_range)
                                 ) + fuel_diversion + fuel_holding

    #-----------------------------------------------------------------------------------------------------------
    return block_fuel, time_block, fuel_total
예제 #14
0
def eval_hybrid_engine_design(aircraft):
    """
    Thermal propulsive architecture design
    """

    design_driver = aircraft.design_driver
    fuselage = aircraft.fuselage

    propulsion = aircraft.propulsion
    engine = aircraft.turbofan_engine
    nacelle = aircraft.turbofan_nacelle

    battery = aircraft.battery
    power_elec = aircraft.power_elec_chain
    e_engine = aircraft.electric_engine
    e_nacelle = aircraft.electric_nacelle

    low_speed = aircraft.low_speed

    (MTO,MCN,MCL,MCR,FID) = propulsion.rating_code

    # Propulsion architecture design, definition of e-fan power in each fligh t phase
    #-----------------------------------------------------------------------------------------------------------

    # Initialisation
    crm = design_driver.cruise_mach
    toc = design_driver.top_of_climb_altp
    rca = design_driver.ref_cruise_altp
    roa = low_speed.req_oei_altp

    #                      MTO   MCN    MCL  MCR  FIR
    fd_disa = numpy.array([15. , 0.   , 0. , 0. , 0. ])
    fd_altp = numpy.array([0.  , roa  , toc, rca, rca])
    fd_mach = numpy.array([0.25, crm/2, crm, crm, crm])
    fd_nei  = numpy.array([0.  , 1.   , 0. , 0. , 0. ])

    e_engine.flight_data = {"disa":fd_disa, "altp":fd_altp, "mach":fd_mach, "nei":fd_nei}

    e_fan_power = numpy.array([power_elec.mto,
                               power_elec.mcn,
                               power_elec.mcl,
                               power_elec.mcr,
                               power_elec.fid])

    # Battery power feed is used in temporary phases only (take off and climb)
    battery_power_feed = numpy.array([1,0,1,0,0])*battery.power_feed \
                                                 *e_nacelle.controller_efficiency \
                                                 *e_nacelle.motor_efficiency

    e_power_ratio = numpy.zeros(5)
    e_shaft_power = numpy.zeros(5)

    for rating in propulsion.rating_code:

        (Pamb,Tamb,Tstd,dTodZ) = earth.atmosphere(fd_altp[rating],fd_disa[rating])
        (fn,data) = turbofan_thrust(aircraft,Pamb,Tamb,fd_mach[rating],rating,fd_nei[rating])
        (fn_core,fn_fan0,fn0,shaft_power0) = data

        if e_fan_power[rating]>1:       # required eFan shaft power is given, turbofan shaft power ratio is deduced

            # Fraction of the turbofan shaft power dedicated to electric generation
            e_power_ratio[rating] =  ( (e_fan_power[rating] - battery_power_feed[rating] \
                                        )/ power_elec.overall_efficiency \
                                      )/((shaft_power0)*(engine.n_engine-fd_nei[rating]))

            # e-fan shaft power
            e_shaft_power[rating] = e_fan_power[rating]

        else:       # required turbofan shaft power ration is given, absolute shaft power is deduced

            # Shaft power dedicated to electric generator
            shaft_power2 = e_power_ratio[rating]*shaft_power0*(engine.n_engine-fd_nei[rating])

            # Fraction of the shaft power dedicated to the electric generation
            e_power_ratio[rating] = e_fan_power[rating]

            e_shaft_power[rating] =   shaft_power2*power_elec.overall_efficiency \
                                    + battery_power_feed[rating]

    # Storing results
    e_engine.mto_e_power_ratio = e_power_ratio[MTO]
    e_engine.mcn_e_power_ratio = e_power_ratio[MCN]
    e_engine.mcl_e_power_ratio = e_power_ratio[MCL]
    e_engine.mcr_e_power_ratio = e_power_ratio[MCR]
    e_engine.fid_e_power_ratio = e_power_ratio[FID]

    e_engine.mto_e_shaft_power = e_shaft_power[MTO]
    e_engine.mcn_e_shaft_power = e_shaft_power[MCN]
    e_engine.mcl_e_shaft_power = e_shaft_power[MCL]
    e_engine.mcr_e_shaft_power = e_shaft_power[MCR]
    e_engine.fid_e_shaft_power = e_shaft_power[FID]

    # Engine performance update
    #-----------------------------------------------------------------------------------------------------------
    (Pamb,Tamb,Tstd,dTodZ) = earth.atmosphere(fd_altp[MTO],fd_disa[MTO])
    (fn,data) = turbofan_thrust(aircraft,Pamb,Tamb,fd_mach[MTO],MTO,fd_nei[MTO])
    (fn_core,fn_fan0,fn0,shaft_power0) = data

    shaft_power1 = (1-e_power_ratio[MTO])*shaft_power0     # Shaft power dedicated to the fan at take off

    Vsnd = earth.sound_speed(Tamb)
    Vair = Vsnd*fd_mach[MTO]

    fn_fan1 = nacelle.efficiency_prop*shaft_power1/Vair     # Effective fan thrust

    engine.kfn_off_take = (fn_core + fn_fan1)/fn0       # Thrust reduction due to power off take for the e-fan

    return
예제 #15
0
def eval_hybrid_nacelle_design(aircraft):
    """
    Hybrid propulsive architecture design
    """

    design_driver = aircraft.design_driver
    fuselage = aircraft.fuselage
    wing = aircraft.wing

    propulsion = aircraft.propulsion

    engine = aircraft.turbofan_engine
    nacelle = aircraft.turbofan_nacelle

    e_engine = aircraft.electric_engine
    e_nacelle = aircraft.electric_nacelle

    (MTO,MCN,MCL,MCR,FID) = propulsion.rating_code

    # Turbofan nacelles geometry adjustment
    #-----------------------------------------------------------------------------------------------------------
    nacWidth0 = 0.49*engine.bpr**0.67 + 4.8e-6*engine.reference_thrust      # Reference dimensions of the nacelle without power off take

    nacLength0 = 0.86*nacWidth0 + engine.bpr**0.37

    kSize = numpy.sqrt(engine.kfn_off_take)      # Diameter decrease due to max thrust decrease

    kSize_eff = (kSize + engine.core_width_ratio * (1-kSize))      # Diameter decrease considering core is unchanged

    nacelle.width = nacWidth0*kSize_eff     # Real nacelle diameter assuming core section remains unchanged

    nacelle.length = nacLength0*kSize_eff   # Nacelle length is reduced according to the same factor

    knac = numpy.pi*nacelle.width*nacelle.length

    nacelle.net_wetted_area = knac*(1.48 - 0.0076*knac)*engine.n_engine

    tan_phi0 = 0.25*(wing.c_kink-wing.c_tip)/(wing.y_tip-wing.y_kink) + numpy.tan(wing.sweep)

    if (nacelle.attachment == 1) :  # Nacelles are attached under the wing

        nacelle.y_ext = 0.7 * fuselage.width + 1.4 * nacelle.width      # statistical regression

        nacelle.x_ext = wing.x_root + (nacelle.y_ext-wing.y_root)*tan_phi0 - 0.7*nacelle.length

        nacelle.z_ext = - 0.5 * fuselage.height \
                    + (nacelle.y_ext - 0.5 * fuselage.width) * numpy.tan(wing.dihedral) \
                    - 0.5*nacelle.width

    elif (nacelle.attachment == 2) :    # Nacelles are attached on rear fuselage

        nacelle.y_ext = 0.5 * fuselage.width + 0.6 * nacelle.width      # statistical regression

        nacelle.x_ext = wing.x_root + (nacelle.y_ext-wing.y_root)*tan_phi0 - 0.7*nacelle.length

        nacelle.z_ext = 0.5 * fuselage.height

    # Electric nacelle is design by cruise conditions
    #-----------------------------------------------------------------------------------------------------------
    dISA = 0.
    Altp = design_driver.ref_cruise_altp
    Mach = design_driver.cruise_mach

    (Pamb,Tamb,Tstd,dTodZ) = earth.atmosphere(Altp,dISA)

    shaft_power = e_engine.mcr_e_shaft_power
    hub_width = 0.5     # Diameter of the e fan hub

    body_length = fuselage.length
    body_width = fuselage.width

    eval_bli_nacelle_design(e_nacelle,Pamb,Tamb,Mach,shaft_power,hub_width,body_length,body_width)

    e_nacelle.x_axe = fuselage.length + 0.2*e_nacelle.width
    e_nacelle.y_axe = 0
    e_nacelle.z_axe = 0.91*fuselage.height - 0.55*fuselage.height

    # Engine performance update
    #-----------------------------------------------------------------------------------------------------------
    fd = e_engine.flight_data

    e_fan_thrust = numpy.zeros(5)

    for rating in propulsion.rating_code:

        altp = fd.get("altp")[rating]
        disa = fd.get("disa")[rating]
        mach = fd.get("mach")[rating]
        nei = fd.get("nei")[rating]

        (Pamb,Tamb,Tstd,dTodZ) = earth.atmosphere(altp,disa)
        (fn,sec,data) = hybrid_thrust(aircraft,Pamb,Tamb,mach,rating,nei)
        (fn_core,fn_fan1,fn_fan2,dVbli_o_V,shaft_power2,fn0,shaft_power0) = data

        e_fan_thrust[rating] = fn_fan2

    e_engine.mto_e_fan_thrust = e_fan_thrust[MTO]
    e_engine.mcn_e_fan_thrust = e_fan_thrust[MCN]
    e_engine.mcl_e_fan_thrust = e_fan_thrust[MCL]
    e_engine.mcr_e_fan_thrust = e_fan_thrust[MCR]
    e_engine.fid_e_fan_thrust = e_fan_thrust[FID]

    Vair = Mach*earth.sound_speed(Tamb)

    (eFanFnBli,q1,dVbli) = jet.fan_thrust_with_bli(e_nacelle,Pamb,Tamb,Mach,shaft_power)

    (eFanFn,q0) = jet.fan_thrust(e_nacelle,Pamb,Tamb,Mach,shaft_power)

    propulsion.bli_e_thrust_factor = eFanFnBli / eFanFn     # Thrust increase due to BLI at iso shaft power for the e-fan

    propulsion.bli_thrust_factor = 1.     # Thrust increase due to BLI at iso shaft power for the turbofans (provision)

    return