def _download_model_metadata(self): """Attempt to download model metadata from s3. Raises: GenericNonFatalException: An non fatal exception which we will catch and proceed with work loop. Returns: sensors, version, model_metadata: The needed information from model metadata. """ model_metadata_s3_key = get_s3_key( self._current_racer.inputModel.s3KeyPrefix, MODEL_METADATA_S3_POSTFIX ) try: model_metadata = ModelMetadata( bucket=self._current_racer.inputModel.s3BucketName, s3_key=model_metadata_s3_key, region_name=self._region, local_path=MODEL_METADATA_LOCAL_PATH_FORMAT.format(self._agent_name), ) model_metadata_info = model_metadata.get_model_metadata_info() sensors = model_metadata_info[ModelMetadataKeys.SENSOR.value] simapp_version = model_metadata_info[ModelMetadataKeys.VERSION.value] except botocore.exceptions.ClientError as err: error_msg = "[s3] Client Error: Failed to download model_metadata file: \ s3_bucket: {}, s3_key: {}, {}.".format( self._current_racer.inputModel.s3BucketName, model_metadata_s3_key, err ) raise GenericNonFatalException( error_msg=error_msg, error_code=SIMAPP_EVENT_ERROR_CODE_400, error_name=SIMAPP_EVENT_USER_ERROR, ) except Exception as err: error_msg = "[s3] System Error: Failed to download model_metadata file: \ s3_bucket: {}, s3_key: {}, {}.".format( self._current_racer.inputModel.s3BucketName, model_metadata_s3_key, err ) raise GenericNonFatalException( error_msg=error_msg, error_code=SIMAPP_EVENT_ERROR_CODE_500, error_name=SIMAPP_EVENT_SYSTEM_ERROR, ) return sensors, simapp_version, model_metadata
def validate(s3_bucket, s3_prefix, aws_region): screen.set_use_colors(False) screen.log_title(" S3 bucket: {} \n S3 prefix: {}".format( s3_bucket, s3_prefix)) # download model metadata model_metadata = ModelMetadata(bucket=s3_bucket, s3_key=get_s3_key( s3_prefix, MODEL_METADATA_S3_POSTFIX), region_name=aws_region, local_path=MODEL_METADATA_LOCAL_PATH) # Create model local path os.makedirs(LOCAL_MODEL_DIR) try: # Handle backward compatibility model_metadata_info = model_metadata.get_model_metadata_info() observation_list = model_metadata_info[ModelMetadataKeys.SENSOR.value] version = model_metadata_info[ModelMetadataKeys.VERSION.value] except Exception as ex: log_and_exit("Failed to parse model_metadata file: {}".format(ex), SIMAPP_VALIDATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_400) # Below get_transition_data function must called before create_training_agent function # to avoid 500 in case unsupported Sensor is received. # create_training_agent will exit with 500 if unsupported sensor is received, # and get_transition_data function below will exit with 400 if unsupported sensor is received. # We want to return 400 in model validation case if unsupported sensor is received. # Thus, call this get_transition_data function before create_traning_agent function! transitions = get_transition_data(observation_list) checkpoint = Checkpoint(bucket=s3_bucket, s3_prefix=s3_prefix, region_name=args.aws_region, agent_name='agent', checkpoint_dir=LOCAL_MODEL_DIR) # make coach checkpoint compatible if version < SIMAPP_VERSION_2 and not checkpoint.rl_coach_checkpoint.is_compatible( ): checkpoint.rl_coach_checkpoint.make_compatible( checkpoint.syncfile_ready) # add checkpoint into checkpoint_dict checkpoint_dict = {'agent': checkpoint} agent_config = { 'model_metadata': model_metadata, ConfigParams.CAR_CTRL_CONFIG.value: { ConfigParams.LINK_NAME_LIST.value: [], ConfigParams.VELOCITY_LIST.value: {}, ConfigParams.STEERING_LIST.value: {}, ConfigParams.CHANGE_START.value: None, ConfigParams.ALT_DIR.value: None, ConfigParams.MODEL_METADATA.value: model_metadata, ConfigParams.REWARD.value: None, ConfigParams.AGENT_NAME.value: 'racecar' } } agent_list = list() agent_list.append(create_training_agent(agent_config)) sm_hyperparams_dict = {} graph_manager, _ = get_graph_manager(hp_dict=sm_hyperparams_dict, agent_list=agent_list, run_phase_subject=None) ds_params_instance = S3BotoDataStoreParameters( checkpoint_dict=checkpoint_dict) graph_manager.data_store = S3BotoDataStore(ds_params_instance, graph_manager, ignore_lock=True) task_parameters = TaskParameters() task_parameters.checkpoint_restore_path = LOCAL_MODEL_DIR _validate(graph_manager=graph_manager, task_parameters=task_parameters, transitions=transitions, s3_bucket=s3_bucket, s3_prefix=s3_prefix, aws_region=aws_region)
def main(): screen.set_use_colors(False) parser = argparse.ArgumentParser() parser.add_argument('-pk', '--preset_s3_key', help="(string) Name of a preset to download from S3", type=str, required=False) parser.add_argument( '-ek', '--environment_s3_key', help="(string) Name of an environment file to download from S3", type=str, required=False) parser.add_argument('--model_metadata_s3_key', help="(string) Model Metadata File S3 Key", type=str, required=False) parser.add_argument( '-c', '--checkpoint_dir', help= '(string) Path to a folder containing a checkpoint to write the model to.', type=str, default='./checkpoint') parser.add_argument( '--pretrained_checkpoint_dir', help='(string) Path to a folder for downloading a pre-trained model', type=str, default=PRETRAINED_MODEL_DIR) parser.add_argument('--s3_bucket', help='(string) S3 bucket', type=str, default=os.environ.get( "SAGEMAKER_SHARED_S3_BUCKET_PATH", "gsaur-test")) parser.add_argument('--s3_prefix', help='(string) S3 prefix', type=str, default='sagemaker') parser.add_argument('--framework', help='(string) tensorflow or mxnet', type=str, default='tensorflow') parser.add_argument('--pretrained_s3_bucket', help='(string) S3 bucket for pre-trained model', type=str) parser.add_argument('--pretrained_s3_prefix', help='(string) S3 prefix for pre-trained model', type=str, default='sagemaker') parser.add_argument('--aws_region', help='(string) AWS region', type=str, default=os.environ.get("AWS_REGION", "us-east-1")) args, _ = parser.parse_known_args() s3_client = S3Client(region_name=args.aws_region, max_retry_attempts=0) # download model metadata # TODO: replace 'agent' with name of each agent model_metadata_download = ModelMetadata( bucket=args.s3_bucket, s3_key=args.model_metadata_s3_key, region_name=args.aws_region, local_path=MODEL_METADATA_LOCAL_PATH_FORMAT.format('agent')) model_metadata_info = model_metadata_download.get_model_metadata_info() network_type = model_metadata_info[ModelMetadataKeys.NEURAL_NETWORK.value] version = model_metadata_info[ModelMetadataKeys.VERSION.value] # upload model metadata model_metadata_upload = ModelMetadata( bucket=args.s3_bucket, s3_key=get_s3_key(args.s3_prefix, MODEL_METADATA_S3_POSTFIX), region_name=args.aws_region, local_path=MODEL_METADATA_LOCAL_PATH_FORMAT.format('agent')) model_metadata_upload.persist( s3_kms_extra_args=utils.get_s3_kms_extra_args()) shutil.copy2(model_metadata_download.local_path, SM_MODEL_OUTPUT_DIR) success_custom_preset = False if args.preset_s3_key: preset_local_path = "./markov/presets/preset.py" try: s3_client.download_file(bucket=args.s3_bucket, s3_key=args.preset_s3_key, local_path=preset_local_path) success_custom_preset = True except botocore.exceptions.ClientError: pass if not success_custom_preset: logger.info( "Could not download the preset file. Using the default DeepRacer preset." ) else: preset_location = "markov.presets.preset:graph_manager" graph_manager = short_dynamic_import(preset_location, ignore_module_case=True) s3_client.upload_file( bucket=args.s3_bucket, s3_key=os.path.normpath("%s/presets/preset.py" % args.s3_prefix), local_path=preset_local_path, s3_kms_extra_args=utils.get_s3_kms_extra_args()) if success_custom_preset: logger.info("Using preset: %s" % args.preset_s3_key) if not success_custom_preset: params_blob = os.environ.get('SM_TRAINING_ENV', '') if params_blob: params = json.loads(params_blob) sm_hyperparams_dict = params["hyperparameters"] else: sm_hyperparams_dict = {} #! TODO each agent should have own config agent_config = { 'model_metadata': model_metadata_download, ConfigParams.CAR_CTRL_CONFIG.value: { ConfigParams.LINK_NAME_LIST.value: [], ConfigParams.VELOCITY_LIST.value: {}, ConfigParams.STEERING_LIST.value: {}, ConfigParams.CHANGE_START.value: None, ConfigParams.ALT_DIR.value: None, ConfigParams.MODEL_METADATA.value: model_metadata_download, ConfigParams.REWARD.value: None, ConfigParams.AGENT_NAME.value: 'racecar' } } agent_list = list() agent_list.append(create_training_agent(agent_config)) graph_manager, robomaker_hyperparams_json = get_graph_manager( hp_dict=sm_hyperparams_dict, agent_list=agent_list, run_phase_subject=None, run_type=str(RunType.TRAINER)) # Upload hyperparameters to SageMaker shared s3 bucket hyperparameters = Hyperparameters(bucket=args.s3_bucket, s3_key=get_s3_key( args.s3_prefix, HYPERPARAMETER_S3_POSTFIX), region_name=args.aws_region) hyperparameters.persist( hyperparams_json=robomaker_hyperparams_json, s3_kms_extra_args=utils.get_s3_kms_extra_args()) # Attach sample collector to graph_manager only if sample count > 0 max_sample_count = int(sm_hyperparams_dict.get("max_sample_count", 0)) if max_sample_count > 0: sample_collector = SampleCollector( bucket=args.s3_bucket, s3_prefix=args.s3_prefix, region_name=args.aws_region, max_sample_count=max_sample_count, sampling_frequency=int( sm_hyperparams_dict.get("sampling_frequency", 1))) graph_manager.sample_collector = sample_collector # persist IP config from sagemaker to s3 ip_config = IpConfig(bucket=args.s3_bucket, s3_prefix=args.s3_prefix, region_name=args.aws_region) ip_config.persist(s3_kms_extra_args=utils.get_s3_kms_extra_args()) training_algorithm = model_metadata_download.training_algorithm output_head_format = FROZEN_HEAD_OUTPUT_GRAPH_FORMAT_MAPPING[ training_algorithm] use_pretrained_model = args.pretrained_s3_bucket and args.pretrained_s3_prefix # Handle backward compatibility if use_pretrained_model: # checkpoint s3 instance for pretrained model # TODO: replace 'agent' for multiagent training checkpoint = Checkpoint(bucket=args.pretrained_s3_bucket, s3_prefix=args.pretrained_s3_prefix, region_name=args.aws_region, agent_name='agent', checkpoint_dir=args.pretrained_checkpoint_dir, output_head_format=output_head_format) # make coach checkpoint compatible if version < SIMAPP_VERSION_2 and not checkpoint.rl_coach_checkpoint.is_compatible( ): checkpoint.rl_coach_checkpoint.make_compatible( checkpoint.syncfile_ready) # get best model checkpoint string model_checkpoint_name = checkpoint.deepracer_checkpoint_json.get_deepracer_best_checkpoint( ) # Select the best checkpoint model by uploading rl coach .coach_checkpoint file checkpoint.rl_coach_checkpoint.update( model_checkpoint_name=model_checkpoint_name, s3_kms_extra_args=utils.get_s3_kms_extra_args()) # add checkpoint into checkpoint_dict checkpoint_dict = {'agent': checkpoint} # load pretrained model ds_params_instance_pretrained = S3BotoDataStoreParameters( checkpoint_dict=checkpoint_dict) data_store_pretrained = S3BotoDataStore(ds_params_instance_pretrained, graph_manager, True) data_store_pretrained.load_from_store() memory_backend_params = DeepRacerRedisPubSubMemoryBackendParameters( redis_address="localhost", redis_port=6379, run_type=str(RunType.TRAINER), channel=args.s3_prefix, network_type=network_type) graph_manager.memory_backend_params = memory_backend_params # checkpoint s3 instance for training model checkpoint = Checkpoint(bucket=args.s3_bucket, s3_prefix=args.s3_prefix, region_name=args.aws_region, agent_name='agent', checkpoint_dir=args.checkpoint_dir, output_head_format=output_head_format) checkpoint_dict = {'agent': checkpoint} ds_params_instance = S3BotoDataStoreParameters( checkpoint_dict=checkpoint_dict) graph_manager.data_store_params = ds_params_instance graph_manager.data_store = S3BotoDataStore(ds_params_instance, graph_manager) task_parameters = TaskParameters() task_parameters.experiment_path = SM_MODEL_OUTPUT_DIR task_parameters.checkpoint_save_secs = 20 if use_pretrained_model: task_parameters.checkpoint_restore_path = args.pretrained_checkpoint_dir task_parameters.checkpoint_save_dir = args.checkpoint_dir training_worker( graph_manager=graph_manager, task_parameters=task_parameters, user_batch_size=json.loads(robomaker_hyperparams_json)["batch_size"], user_episode_per_rollout=json.loads( robomaker_hyperparams_json)["num_episodes_between_training"], training_algorithm=training_algorithm)
def main(): screen.set_use_colors(False) parser = argparse.ArgumentParser() parser.add_argument( '-c', '--checkpoint_dir', help= '(string) Path to a folder containing a checkpoint to restore the model from.', type=str, default='./checkpoint') parser.add_argument('--s3_bucket', help='(string) S3 bucket', type=str, default=rospy.get_param("SAGEMAKER_SHARED_S3_BUCKET", "gsaur-test")) parser.add_argument('--s3_prefix', help='(string) S3 prefix', type=str, default=rospy.get_param("SAGEMAKER_SHARED_S3_PREFIX", "sagemaker")) parser.add_argument( '--num_workers', help="(int) The number of workers started in this pool", type=int, default=int(rospy.get_param("NUM_WORKERS", 1))) parser.add_argument('--rollout_idx', help="(int) The index of current rollout worker", type=int, default=0) parser.add_argument('-r', '--redis_ip', help="(string) IP or host for the redis server", default='localhost', type=str) parser.add_argument('-rp', '--redis_port', help="(int) Port of the redis server", default=6379, type=int) parser.add_argument('--aws_region', help='(string) AWS region', type=str, default=rospy.get_param("AWS_REGION", "us-east-1")) parser.add_argument('--reward_file_s3_key', help='(string) Reward File S3 Key', type=str, default=rospy.get_param("REWARD_FILE_S3_KEY", None)) parser.add_argument('--model_metadata_s3_key', help='(string) Model Metadata File S3 Key', type=str, default=rospy.get_param("MODEL_METADATA_FILE_S3_KEY", None)) # For training job, reset is not allowed. penalty_seconds, off_track_penalty, and # collision_penalty will all be 0 be default parser.add_argument('--number_of_resets', help='(integer) Number of resets', type=int, default=int(rospy.get_param("NUMBER_OF_RESETS", 0))) parser.add_argument('--penalty_seconds', help='(float) penalty second', type=float, default=float(rospy.get_param("PENALTY_SECONDS", 0.0))) parser.add_argument('--job_type', help='(string) job type', type=str, default=rospy.get_param("JOB_TYPE", "TRAINING")) parser.add_argument('--is_continuous', help='(boolean) is continous after lap completion', type=bool, default=utils.str2bool( rospy.get_param("IS_CONTINUOUS", False))) parser.add_argument('--race_type', help='(string) Race type', type=str, default=rospy.get_param("RACE_TYPE", "TIME_TRIAL")) parser.add_argument('--off_track_penalty', help='(float) off track penalty second', type=float, default=float(rospy.get_param("OFF_TRACK_PENALTY", 0.0))) parser.add_argument('--collision_penalty', help='(float) collision penalty second', type=float, default=float(rospy.get_param("COLLISION_PENALTY", 0.0))) args = parser.parse_args() logger.info("S3 bucket: %s", args.s3_bucket) logger.info("S3 prefix: %s", args.s3_prefix) # Download and import reward function # TODO: replace 'agent' with name of each agent for multi-agent training reward_function_file = RewardFunction( bucket=args.s3_bucket, s3_key=args.reward_file_s3_key, region_name=args.aws_region, local_path=REWARD_FUCTION_LOCAL_PATH_FORMAT.format('agent')) reward_function = reward_function_file.get_reward_function() # Instantiate Cameras configure_camera(namespaces=['racecar']) preset_file_success, _ = download_custom_files_if_present( s3_bucket=args.s3_bucket, s3_prefix=args.s3_prefix, aws_region=args.aws_region) # download model metadata # TODO: replace 'agent' with name of each agent model_metadata = ModelMetadata( bucket=args.s3_bucket, s3_key=args.model_metadata_s3_key, region_name=args.aws_region, local_path=MODEL_METADATA_LOCAL_PATH_FORMAT.format('agent')) model_metadata_info = model_metadata.get_model_metadata_info() version = model_metadata_info[ModelMetadataKeys.VERSION.value] agent_config = { 'model_metadata': model_metadata, ConfigParams.CAR_CTRL_CONFIG.value: { ConfigParams.LINK_NAME_LIST.value: LINK_NAMES, ConfigParams.VELOCITY_LIST.value: VELOCITY_TOPICS, ConfigParams.STEERING_LIST.value: STEERING_TOPICS, ConfigParams.CHANGE_START.value: utils.str2bool(rospy.get_param('CHANGE_START_POSITION', True)), ConfigParams.ALT_DIR.value: utils.str2bool( rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)), ConfigParams.MODEL_METADATA.value: model_metadata, ConfigParams.REWARD.value: reward_function, ConfigParams.AGENT_NAME.value: 'racecar', ConfigParams.VERSION.value: version, ConfigParams.NUMBER_OF_RESETS.value: args.number_of_resets, ConfigParams.PENALTY_SECONDS.value: args.penalty_seconds, ConfigParams.NUMBER_OF_TRIALS.value: None, ConfigParams.IS_CONTINUOUS.value: args.is_continuous, ConfigParams.RACE_TYPE.value: args.race_type, ConfigParams.COLLISION_PENALTY.value: args.collision_penalty, ConfigParams.OFF_TRACK_PENALTY.value: args.off_track_penalty } } #! TODO each agent should have own s3 bucket metrics_key = rospy.get_param('METRICS_S3_OBJECT_KEY') if args.num_workers > 1 and args.rollout_idx > 0: key_tuple = os.path.splitext(metrics_key) metrics_key = "{}_{}{}".format(key_tuple[0], str(args.rollout_idx), key_tuple[1]) metrics_s3_config = { MetricsS3Keys.METRICS_BUCKET.value: rospy.get_param('METRICS_S3_BUCKET'), MetricsS3Keys.METRICS_KEY.value: metrics_key, MetricsS3Keys.REGION.value: rospy.get_param('AWS_REGION') } run_phase_subject = RunPhaseSubject() agent_list = list() #TODO: replace agent for multi agent training # checkpoint s3 instance # TODO replace agent with agent_0 and so on for multiagent case checkpoint = Checkpoint(bucket=args.s3_bucket, s3_prefix=args.s3_prefix, region_name=args.aws_region, agent_name='agent', checkpoint_dir=args.checkpoint_dir) agent_list.append( create_rollout_agent( agent_config, TrainingMetrics( agent_name='agent', s3_dict_metrics=metrics_s3_config, deepracer_checkpoint_json=checkpoint.deepracer_checkpoint_json, ckpnt_dir=os.path.join(args.checkpoint_dir, 'agent'), run_phase_sink=run_phase_subject, use_model_picker=(args.rollout_idx == 0)), run_phase_subject)) agent_list.append(create_obstacles_agent()) agent_list.append(create_bot_cars_agent()) # ROS service to indicate all the robomaker markov packages are ready for consumption signal_robomaker_markov_package_ready() PhaseObserver('/agent/training_phase', run_phase_subject) aws_region = rospy.get_param('AWS_REGION', args.aws_region) simtrace_s3_bucket = rospy.get_param('SIMTRACE_S3_BUCKET', None) mp4_s3_bucket = rospy.get_param('MP4_S3_BUCKET', None) if args.rollout_idx == 0 else None if simtrace_s3_bucket: simtrace_s3_object_prefix = rospy.get_param('SIMTRACE_S3_PREFIX') if args.num_workers > 1: simtrace_s3_object_prefix = os.path.join(simtrace_s3_object_prefix, str(args.rollout_idx)) if mp4_s3_bucket: mp4_s3_object_prefix = rospy.get_param('MP4_S3_OBJECT_PREFIX') simtrace_video_s3_writers = [] #TODO: replace 'agent' with 'agent_0' for multi agent training and # mp4_s3_object_prefix, mp4_s3_bucket will be a list, so need to access with index if simtrace_s3_bucket: simtrace_video_s3_writers.append( SimtraceVideo( upload_type=SimtraceVideoNames.SIMTRACE_TRAINING.value, bucket=simtrace_s3_bucket, s3_prefix=simtrace_s3_object_prefix, region_name=aws_region, local_path=SIMTRACE_TRAINING_LOCAL_PATH_FORMAT.format( 'agent'))) if mp4_s3_bucket: simtrace_video_s3_writers.extend([ SimtraceVideo( upload_type=SimtraceVideoNames.PIP.value, bucket=mp4_s3_bucket, s3_prefix=mp4_s3_object_prefix, region_name=aws_region, local_path=CAMERA_PIP_MP4_LOCAL_PATH_FORMAT.format('agent')), SimtraceVideo( upload_type=SimtraceVideoNames.DEGREE45.value, bucket=mp4_s3_bucket, s3_prefix=mp4_s3_object_prefix, region_name=aws_region, local_path=CAMERA_45DEGREE_LOCAL_PATH_FORMAT.format('agent')), SimtraceVideo( upload_type=SimtraceVideoNames.TOPVIEW.value, bucket=mp4_s3_bucket, s3_prefix=mp4_s3_object_prefix, region_name=aws_region, local_path=CAMERA_TOPVIEW_LOCAL_PATH_FORMAT.format('agent')) ]) # TODO: replace 'agent' with specific agent name for multi agent training ip_config = IpConfig(bucket=args.s3_bucket, s3_prefix=args.s3_prefix, region_name=args.aws_region, local_path=IP_ADDRESS_LOCAL_PATH.format('agent')) redis_ip = ip_config.get_ip_config() # Download hyperparameters from SageMaker shared s3 bucket # TODO: replace 'agent' with name of each agent hyperparameters = Hyperparameters( bucket=args.s3_bucket, s3_key=get_s3_key(args.s3_prefix, HYPERPARAMETER_S3_POSTFIX), region_name=args.aws_region, local_path=HYPERPARAMETER_LOCAL_PATH_FORMAT.format('agent')) sm_hyperparams_dict = hyperparameters.get_hyperparameters_dict() enable_domain_randomization = utils.str2bool( rospy.get_param('ENABLE_DOMAIN_RANDOMIZATION', False)) # Make the clients that will allow us to pause and unpause the physics rospy.wait_for_service('/gazebo/pause_physics_dr') rospy.wait_for_service('/gazebo/unpause_physics_dr') pause_physics = ServiceProxyWrapper('/gazebo/pause_physics_dr', Empty) unpause_physics = ServiceProxyWrapper('/gazebo/unpause_physics_dr', Empty) if preset_file_success: preset_location = os.path.join(CUSTOM_FILES_PATH, "preset.py") preset_location += ":graph_manager" graph_manager = short_dynamic_import(preset_location, ignore_module_case=True) logger.info("Using custom preset file!") else: graph_manager, _ = get_graph_manager( hp_dict=sm_hyperparams_dict, agent_list=agent_list, run_phase_subject=run_phase_subject, enable_domain_randomization=enable_domain_randomization, pause_physics=pause_physics, unpause_physics=unpause_physics) # If num_episodes_between_training is smaller than num_workers then cancel worker early. episode_steps_per_rollout = graph_manager.agent_params.algorithm.num_consecutive_playing_steps.num_steps # Reduce number of workers if allocated more than num_episodes_between_training if args.num_workers > episode_steps_per_rollout: logger.info( "Excess worker allocated. Reducing from {} to {}...".format( args.num_workers, episode_steps_per_rollout)) args.num_workers = episode_steps_per_rollout if args.rollout_idx >= episode_steps_per_rollout or args.rollout_idx >= args.num_workers: err_msg_format = "Exiting excess worker..." err_msg_format += "(rollout_idx[{}] >= num_workers[{}] or num_episodes_between_training[{}])" logger.info( err_msg_format.format(args.rollout_idx, args.num_workers, episode_steps_per_rollout)) # Close the down the job utils.cancel_simulation_job() memory_backend_params = DeepRacerRedisPubSubMemoryBackendParameters( redis_address=redis_ip, redis_port=6379, run_type=str(RunType.ROLLOUT_WORKER), channel=args.s3_prefix, num_workers=args.num_workers, rollout_idx=args.rollout_idx) graph_manager.memory_backend_params = memory_backend_params checkpoint_dict = {'agent': checkpoint} ds_params_instance = S3BotoDataStoreParameters( checkpoint_dict=checkpoint_dict) graph_manager.data_store = S3BotoDataStore(ds_params_instance, graph_manager) task_parameters = TaskParameters() task_parameters.checkpoint_restore_path = args.checkpoint_dir rollout_worker(graph_manager=graph_manager, num_workers=args.num_workers, rollout_idx=args.rollout_idx, task_parameters=task_parameters, simtrace_video_s3_writers=simtrace_video_s3_writers, pause_physics=pause_physics, unpause_physics=unpause_physics)
def main(): """ Main function for evaluation worker """ parser = argparse.ArgumentParser() parser.add_argument('-p', '--preset', help="(string) Name of a preset to run \ (class name from the 'presets' directory.)", type=str, required=False) parser.add_argument('--s3_bucket', help='list(string) S3 bucket', type=str, nargs='+', default=rospy.get_param("MODEL_S3_BUCKET", ["gsaur-test"])) parser.add_argument('--s3_prefix', help='list(string) S3 prefix', type=str, nargs='+', default=rospy.get_param("MODEL_S3_PREFIX", ["sagemaker"])) parser.add_argument('--aws_region', help='(string) AWS region', type=str, default=rospy.get_param("AWS_REGION", "us-east-1")) parser.add_argument('--number_of_trials', help='(integer) Number of trials', type=int, default=int(rospy.get_param("NUMBER_OF_TRIALS", 10))) parser.add_argument( '-c', '--local_model_directory', help='(string) Path to a folder containing a checkpoint \ to restore the model from.', type=str, default='./checkpoint') parser.add_argument('--number_of_resets', help='(integer) Number of resets', type=int, default=int(rospy.get_param("NUMBER_OF_RESETS", 0))) parser.add_argument('--penalty_seconds', help='(float) penalty second', type=float, default=float(rospy.get_param("PENALTY_SECONDS", 2.0))) parser.add_argument('--job_type', help='(string) job type', type=str, default=rospy.get_param("JOB_TYPE", "EVALUATION")) parser.add_argument('--is_continuous', help='(boolean) is continous after lap completion', type=bool, default=utils.str2bool( rospy.get_param("IS_CONTINUOUS", False))) parser.add_argument('--race_type', help='(string) Race type', type=str, default=rospy.get_param("RACE_TYPE", "TIME_TRIAL")) parser.add_argument('--off_track_penalty', help='(float) off track penalty second', type=float, default=float(rospy.get_param("OFF_TRACK_PENALTY", 2.0))) parser.add_argument('--collision_penalty', help='(float) collision penalty second', type=float, default=float(rospy.get_param("COLLISION_PENALTY", 5.0))) args = parser.parse_args() arg_s3_bucket = args.s3_bucket arg_s3_prefix = args.s3_prefix logger.info("S3 bucket: %s \n S3 prefix: %s", arg_s3_bucket, arg_s3_prefix) metrics_s3_buckets = rospy.get_param('METRICS_S3_BUCKET') metrics_s3_object_keys = rospy.get_param('METRICS_S3_OBJECT_KEY') arg_s3_bucket, arg_s3_prefix = utils.force_list( arg_s3_bucket), utils.force_list(arg_s3_prefix) metrics_s3_buckets = utils.force_list(metrics_s3_buckets) metrics_s3_object_keys = utils.force_list(metrics_s3_object_keys) validate_list = [ arg_s3_bucket, arg_s3_prefix, metrics_s3_buckets, metrics_s3_object_keys ] simtrace_s3_bucket = rospy.get_param('SIMTRACE_S3_BUCKET', None) mp4_s3_bucket = rospy.get_param('MP4_S3_BUCKET', None) if simtrace_s3_bucket: simtrace_s3_object_prefix = rospy.get_param('SIMTRACE_S3_PREFIX') simtrace_s3_bucket = utils.force_list(simtrace_s3_bucket) simtrace_s3_object_prefix = utils.force_list(simtrace_s3_object_prefix) validate_list.extend([simtrace_s3_bucket, simtrace_s3_object_prefix]) if mp4_s3_bucket: mp4_s3_object_prefix = rospy.get_param('MP4_S3_OBJECT_PREFIX') mp4_s3_bucket = utils.force_list(mp4_s3_bucket) mp4_s3_object_prefix = utils.force_list(mp4_s3_object_prefix) validate_list.extend([mp4_s3_bucket, mp4_s3_object_prefix]) if not all([lambda x: len(x) == len(validate_list[0]), validate_list]): log_and_exit( "Eval worker error: Incorrect arguments passed: {}".format( validate_list), SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) if args.number_of_resets != 0 and args.number_of_resets < MIN_RESET_COUNT: raise GenericRolloutException( "number of resets is less than {}".format(MIN_RESET_COUNT)) # Instantiate Cameras if len(arg_s3_bucket) == 1: configure_camera(namespaces=['racecar']) else: configure_camera(namespaces=[ 'racecar_{}'.format(str(agent_index)) for agent_index in range(len(arg_s3_bucket)) ]) agent_list = list() s3_bucket_dict = dict() s3_prefix_dict = dict() checkpoint_dict = dict() simtrace_video_s3_writers = [] start_positions = get_start_positions(len(arg_s3_bucket)) done_condition = utils.str_to_done_condition( rospy.get_param("DONE_CONDITION", any)) park_positions = utils.pos_2d_str_to_list( rospy.get_param("PARK_POSITIONS", [])) # if not pass in park positions for all done condition case, use default if not park_positions: park_positions = [DEFAULT_PARK_POSITION for _ in arg_s3_bucket] for agent_index, _ in enumerate(arg_s3_bucket): agent_name = 'agent' if len(arg_s3_bucket) == 1 else 'agent_{}'.format( str(agent_index)) racecar_name = 'racecar' if len( arg_s3_bucket) == 1 else 'racecar_{}'.format(str(agent_index)) s3_bucket_dict[agent_name] = arg_s3_bucket[agent_index] s3_prefix_dict[agent_name] = arg_s3_prefix[agent_index] # download model metadata model_metadata = ModelMetadata( bucket=arg_s3_bucket[agent_index], s3_key=get_s3_key(arg_s3_prefix[agent_index], MODEL_METADATA_S3_POSTFIX), region_name=args.aws_region, local_path=MODEL_METADATA_LOCAL_PATH_FORMAT.format(agent_name)) model_metadata_info = model_metadata.get_model_metadata_info() version = model_metadata_info[ModelMetadataKeys.VERSION.value] # checkpoint s3 instance checkpoint = Checkpoint(bucket=arg_s3_bucket[agent_index], s3_prefix=arg_s3_prefix[agent_index], region_name=args.aws_region, agent_name=agent_name, checkpoint_dir=args.local_model_directory) # make coach checkpoint compatible if version < SIMAPP_VERSION_2 and not checkpoint.rl_coach_checkpoint.is_compatible( ): checkpoint.rl_coach_checkpoint.make_compatible( checkpoint.syncfile_ready) # get best model checkpoint string model_checkpoint_name = checkpoint.deepracer_checkpoint_json.get_deepracer_best_checkpoint( ) # Select the best checkpoint model by uploading rl coach .coach_checkpoint file checkpoint.rl_coach_checkpoint.update( model_checkpoint_name=model_checkpoint_name, s3_kms_extra_args=utils.get_s3_kms_extra_args()) checkpoint_dict[agent_name] = checkpoint agent_config = { 'model_metadata': model_metadata, ConfigParams.CAR_CTRL_CONFIG.value: { ConfigParams.LINK_NAME_LIST.value: [ link_name.replace('racecar', racecar_name) for link_name in LINK_NAMES ], ConfigParams.VELOCITY_LIST.value: [ velocity_topic.replace('racecar', racecar_name) for velocity_topic in VELOCITY_TOPICS ], ConfigParams.STEERING_LIST.value: [ steering_topic.replace('racecar', racecar_name) for steering_topic in STEERING_TOPICS ], ConfigParams.CHANGE_START.value: utils.str2bool(rospy.get_param('CHANGE_START_POSITION', False)), ConfigParams.ALT_DIR.value: utils.str2bool( rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)), ConfigParams.MODEL_METADATA.value: model_metadata, ConfigParams.REWARD.value: reward_function, ConfigParams.AGENT_NAME.value: racecar_name, ConfigParams.VERSION.value: version, ConfigParams.NUMBER_OF_RESETS.value: args.number_of_resets, ConfigParams.PENALTY_SECONDS.value: args.penalty_seconds, ConfigParams.NUMBER_OF_TRIALS.value: args.number_of_trials, ConfigParams.IS_CONTINUOUS.value: args.is_continuous, ConfigParams.RACE_TYPE.value: args.race_type, ConfigParams.COLLISION_PENALTY.value: args.collision_penalty, ConfigParams.OFF_TRACK_PENALTY.value: args.off_track_penalty, ConfigParams.START_POSITION.value: start_positions[agent_index], ConfigParams.DONE_CONDITION.value: done_condition } } metrics_s3_config = { MetricsS3Keys.METRICS_BUCKET.value: metrics_s3_buckets[agent_index], MetricsS3Keys.METRICS_KEY.value: metrics_s3_object_keys[agent_index], # Replaced rospy.get_param('AWS_REGION') to be equal to the argument being passed # or default argument set MetricsS3Keys.REGION.value: args.aws_region } aws_region = rospy.get_param('AWS_REGION', args.aws_region) if simtrace_s3_bucket: simtrace_video_s3_writers.append( SimtraceVideo( upload_type=SimtraceVideoNames.SIMTRACE_EVAL.value, bucket=simtrace_s3_bucket[agent_index], s3_prefix=simtrace_s3_object_prefix[agent_index], region_name=aws_region, local_path=SIMTRACE_EVAL_LOCAL_PATH_FORMAT.format( agent_name))) if mp4_s3_bucket: simtrace_video_s3_writers.extend([ SimtraceVideo( upload_type=SimtraceVideoNames.PIP.value, bucket=mp4_s3_bucket[agent_index], s3_prefix=mp4_s3_object_prefix[agent_index], region_name=aws_region, local_path=CAMERA_PIP_MP4_LOCAL_PATH_FORMAT.format( agent_name)), SimtraceVideo( upload_type=SimtraceVideoNames.DEGREE45.value, bucket=mp4_s3_bucket[agent_index], s3_prefix=mp4_s3_object_prefix[agent_index], region_name=aws_region, local_path=CAMERA_45DEGREE_LOCAL_PATH_FORMAT.format( agent_name)), SimtraceVideo( upload_type=SimtraceVideoNames.TOPVIEW.value, bucket=mp4_s3_bucket[agent_index], s3_prefix=mp4_s3_object_prefix[agent_index], region_name=aws_region, local_path=CAMERA_TOPVIEW_LOCAL_PATH_FORMAT.format( agent_name)) ]) run_phase_subject = RunPhaseSubject() agent_list.append( create_rollout_agent( agent_config, EvalMetrics(agent_name, metrics_s3_config, args.is_continuous), run_phase_subject)) agent_list.append(create_obstacles_agent()) agent_list.append(create_bot_cars_agent()) # ROS service to indicate all the robomaker markov packages are ready for consumption signal_robomaker_markov_package_ready() PhaseObserver('/agent/training_phase', run_phase_subject) enable_domain_randomization = utils.str2bool( rospy.get_param('ENABLE_DOMAIN_RANDOMIZATION', False)) sm_hyperparams_dict = {} # Make the clients that will allow us to pause and unpause the physics rospy.wait_for_service('/gazebo/pause_physics_dr') rospy.wait_for_service('/gazebo/unpause_physics_dr') pause_physics = ServiceProxyWrapper('/gazebo/pause_physics_dr', Empty) unpause_physics = ServiceProxyWrapper('/gazebo/unpause_physics_dr', Empty) graph_manager, _ = get_graph_manager( hp_dict=sm_hyperparams_dict, agent_list=agent_list, run_phase_subject=run_phase_subject, enable_domain_randomization=enable_domain_randomization, done_condition=done_condition, pause_physics=pause_physics, unpause_physics=unpause_physics) ds_params_instance = S3BotoDataStoreParameters( checkpoint_dict=checkpoint_dict) graph_manager.data_store = S3BotoDataStore(params=ds_params_instance, graph_manager=graph_manager, ignore_lock=True) graph_manager.env_params.seed = 0 task_parameters = TaskParameters() task_parameters.checkpoint_restore_path = args.local_model_directory evaluation_worker(graph_manager=graph_manager, number_of_trials=args.number_of_trials, task_parameters=task_parameters, simtrace_video_s3_writers=simtrace_video_s3_writers, is_continuous=args.is_continuous, park_positions=park_positions, race_type=args.race_type, pause_physics=pause_physics, unpause_physics=unpause_physics)
def main(): """ Main function for downloading yaml params """ # parse argument s3_region = sys.argv[1] s3_bucket = sys.argv[2] s3_prefix = sys.argv[3] s3_yaml_name = sys.argv[4] launch_name = sys.argv[5] yaml_key = os.path.normpath(os.path.join(s3_prefix, s3_yaml_name)) try: s3_endpoint_url = os.environ.get("S3_ENDPOINT_URL", None) if s3_endpoint_url is not None: logging.info('Endpoint URL {}'.format(s3_endpoint_url)) rospy.set_param('S3_ENDPOINT_URL', s3_endpoint_url) if AgentType.ROLLOUT.value in launch_name: # For rollout, launch_name is "rollout_rl_agent.launch" agent_type = AgentType.ROLLOUT.value elif AgentType.EVALUATION.value in launch_name: # For eval, launch_name is "evaluation_rl_agent.launch" agent_type = AgentType.EVALUATION.value elif AgentType.VIRTUAL_EVENT.value in launch_name: # For virtual event, launch_name is "virtual_event_rl_agent.launch" agent_type = AgentType.VIRTUAL_EVENT.value else: log_and_exit( "Unknown agent type in launch file: {}".format(launch_name), SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) # download yaml file yaml_key = get_s3_key(s3_prefix, s3_yaml_name) yaml_file = YamlFile( agent_type=agent_type, bucket=s3_bucket, s3_key=yaml_key, region_name=s3_region, s3_endpoint_url=s3_endpoint_url, local_path=YAML_LOCAL_PATH_FORMAT.format(s3_yaml_name)) yaml_file.get_yaml_values() if not agent_type == AgentType.VIRTUAL_EVENT.value: # List of racecar names that should include second camera while launching racecars_with_stereo_cameras = list() # List of racecar names that should include lidar while launching racecars_with_lidars = list() # List of SimApp versions simapp_versions = list() for agent_index, model_s3_bucket in enumerate( yaml_file.model_s3_buckets): racecar_name = 'racecar_{}'.format(agent_index) \ if yaml_file.is_multicar else 'racecar' json_key = yaml_file.model_metadata_s3_keys[agent_index] # download model metadata model_metadata = ModelMetadata( bucket=model_s3_bucket, s3_key=json_key, region_name=s3_region, s3_endpoint_url=s3_endpoint_url, local_path=MODEL_METADATA_LOCAL_PATH_FORMAT.format( racecar_name)) model_metadata_info = model_metadata.get_model_metadata_info() sensors = model_metadata_info[ModelMetadataKeys.SENSOR.value] simapp_version = model_metadata_info[ ModelMetadataKeys.VERSION.value] simapp_versions.append(str(simapp_version)) if Input.STEREO.value in sensors: racecars_with_stereo_cameras.append(racecar_name) if Input.LIDAR.value in sensors or Input.SECTOR_LIDAR.value in sensors or \ Input.DISCRETIZED_SECTOR_LIDAR.value in sensors: racecars_with_lidars.append(racecar_name) cmd = [ ''.join( ("roslaunch deepracer_simulation_environment {} ".format( launch_name), "local_yaml_path:={} ".format( yaml_file.local_path), "racecars_with_stereo_cameras:={} ".format( ','.join(racecars_with_stereo_cameras)), "racecars_with_lidars:={} ".format( ','.join(racecars_with_lidars)), "multicar:={} ".format(yaml_file.is_multicar), "body_shell_types:={} ".format(','.join( yaml_file.body_shell_types)), "simapp_versions:={} ".format(','.join(simapp_versions)), "f1:={} ".format(yaml_file.is_f1), "publish_to_kinesis_stream:={} ".format( not yaml_file.is_leaderboard_job))) ] else: # Note: SimApp Version is default to 4.0: virtual event only have a single body_shell_types cmd = [ ''.join( ("roslaunch deepracer_simulation_environment {} ".format( launch_name), "local_yaml_path:={} ".format(yaml_file.local_path), "body_shell_types:={} ".format( yaml_file.body_shell_types), "simapp_versions:={} ".format('4.0'), "f1:={} ".format(yaml_file.is_f1), "kinesis_webrtc_signaling_channel_name:={} ".format( yaml_file.kinesis_webrtc_signaling_channel_name), "publish_to_kinesis_stream:={} ".format( not yaml_file.is_leaderboard_job))) ] Popen(cmd, shell=True, executable="/bin/bash") except botocore.exceptions.ClientError as ex: log_and_exit( "Download params and launch of agent node S3 ClientError: s3_bucket: {}, yaml_key: {}, {}" .format(s3_bucket, yaml_key, ex), SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) except botocore.exceptions.EndpointConnectionError: log_and_exit("No Internet connection or s3 service unavailable", SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) except ValueError as ex: log_and_exit("User modified model_metadata.json: {}".format(ex), SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500) except Exception as ex: log_and_exit( "Download params and launch of agent node failed: s3_bucket: {}, yaml_key: {}, {}" .format(s3_bucket, yaml_key, ex), SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500)