# xdiff1, xdiff2, # xlogdiff1, xlogdiff2, )) ) if run_type == 0: print('Loading Data...') train_data = np.genfromtxt(file_x, delimiter=';') target_data = np.genfromtxt(file_y, delimiter=';') # train_data, target_data = train_data[-limit:,], target_data[-limit:] data_x = prepare_data(train_data) shape_x = data_x.shape data_y = signal_to_class(target_data, n=nclasses, normalize=normalize_class) # data_x, data_y = create_timeseries_matrix(train_data, data_y, ts_lookback) # batch_input_shape=(batch_size, timesteps, units) # data_x = np.reshape(data_x, (shape_x[0], ts_lookback, shape_x[1])) # For training validation train_x, test_x, train_y, test_y = train_test_split(data_x, data_y, test_size=train_test) print('Input data shape :', data_x.shape) print('Train/Test :', len(train_y), '/', len(test_y)) #=============================================================================# # P R E P A R E M O D E L # #=============================================================================#
# data[:, 17:19], data[:, 19]-50, # atr, cci, rsi # data[:, 20:22], # usd and eur indexes )) ) print('Loading Data...') train_data = np.genfromtxt(file_x, delimiter=',') # target_data = np.genfromtxt(file_y, delimiter=';') # train_data, target_data = train_data[-limit:,], target_data[-limit:] # data_x = prepare_data(train_data) data_x, data_y = train_data[:, :-1], train_data[:, -1] shape_x = data_x.shape data_y = signal_to_class(data_y, n=nclasses) # data_x, data_y = create_timeseries_matrix(data_x, data_y, ts_lookback) # batch_input_shape=(batch_size, timesteps, units) # data_x = np.reshape(data_x, (data_x.shape[0], 1, shape_x[1])) # For training validation train_x, test_x, train_y, test_y = train_test_split(data_x, data_y, test_size=train_test) train_x1, train_x2 = np.column_stack((train_x[:, 1:4], train_x[:, 5], train_x[:, 7], train_x[:, 10:16], train_x[:, 24])), \ np.column_stack((train_x[:, 4], train_x[:, 6], train_x[:, 8:10], train_x[:, 16:24])) test_x1, test_x2 = np.column_stack((test_x[:, 1:4], test_x[:, 5], test_x[:, 7], test_x[:, 10:16], test_x[:, 24])), \ np.column_stack((test_x[:, 4], test_x[:, 6], test_x[:, 8:10], test_x[:, 16:24]))