def prepare_data(data): # for market(0, 3), ema(4, 7), macd(8, 9) sigmoid = get_sigmoid_ration sigm0 = sigmoid(data[:, 0]) sigm1 = sigmoid(data[:, 1]) sigm2 = sigmoid(data[:, 2]) sigm3 = sigmoid(data[:, 3]) delta_oc = get_delta(data, 0, 3) diff1 = get_diff(data[:, 1]) diff2 = get_diff(data[:, 2]) diff3 = get_diff(data[:, 3]) logdiff1 = get_log_diff(data[:, 1]) logdiff2 = get_log_diff(data[:, 2]) logdiff3 = get_log_diff(data[:, 3]) detrend1 = get_delta(data, 3, 4) # close - ema13 detrend2 = get_delta(data, 3, 5) # close - ema26 diff_ema1 = get_diff(data[:, 4]) diff_ema2 = get_diff(data[:, 5]) delta_ema1 = get_delta(data, 4, 5) delta_ema2 = get_delta(data, 6, 7) # return np.array( np.column_stack( (sigm0, sigm1, sigm2, sigm3, delta_oc, diff1, diff2, diff3, logdiff1, logdiff2, logdiff3, detrend1, detrend2, diff_ema1, diff_ema2, delta_ema1, delta_ema2, data[:, 8], data[:, 9])))
def prepare_data(data): # for time(0, 6), market(7, 10), ema(11, 14), macd(15, 16) # for atr(17), cci(18), rsi(19), usdx(20), eurx(21) # # delta = get_delta(data, 7, 10) # sigmoid = get_sigmoid_to_zero # sigmoid = get_sigmoid_ration # sigm1 = sigmoid(data[:, 8]) # sigm2 = sigmoid(data[:, 9]) # sigm3 = sigmoid(data[:, 10]) diff1 = get_diff(data[:, 8]) diff2 = get_diff(data[:, 9]) diff3 = get_diff(data[:, 10]) # logdiff1 = get_log_diff(data[:, 8]) # logdiff2 = get_log_diff(data[:, 9]) # logdiff3 = get_log_diff(data[:, 10]) detrend1 = get_delta(data, 10, 11) # close - ema13 detrend2 = get_delta(data, 10, 12) # close - ema26 # # edelta1 = get_delta(data, 11, 12) # edelta2 = get_delta(data, 13, 14) # ediff1 = get_diff(data[:, 11]) # ediff2 = get_diff(data[:, 12]) # elogdiff1 = get_log_diff(data[:, 11]) # elogdiff2 = get_log_diff(data[:, 12]) # # xdelta = get_delta(data, 20, 21) xdiff1 = get_diff(data[:, 20]) xdiff2 = get_diff(data[:, 21]) # xlogdiff1 = get_log_diff(data[:, 20]) # xlogdiff2 = get_log_diff(data[:, 21]) return np.array( np.column_stack(( # data[:, 5:6], # hours and minutes # data[:, 8:11], # prices (without open) # delta, # sigm1, sigm2, sigm3, diff1, diff2, diff3, # logdiff1, logdiff2, logdiff3, detrend1, detrend2, # data[:, 11:15], # ema's # edelta1, edelta2, # ediff1, ediff2, # elogdiff1, elogdiff2, # data[:, 15:17], # macd data[:, 17:20], # atr, cci, rsi # data[:, 20:22], # usd and eur indexes # xdelta, # xdiff1, xdiff2, # xlogdiff1, xlogdiff2, )))
def prepare_data(data): # for time(0, 6), market(7, 10), ema(11, 14), macd(15, 16) # for atr(17), cci(18), rsi(19), usdx(20), eurx(21) #---------------------------- # for market(0, 3), ema(4, 7), # for atr(8), cci(9), rsi(10) mrkt, ema = range(4), range(4, 8) delta = get_delta(data, mrkt[0], mrkt[3]) diff1 = get_diff(data[:, mrkt[1]]) diff2 = get_diff(data[:, mrkt[2]]) diff3 = get_diff(data[:, mrkt[3]]) # logdiff1 = get_log_diff(data[:, mrkt[1]]) # logdiff2 = get_log_diff(data[:, mrkt[2]]) # logdiff3 = get_log_diff(data[:, mrkt[3]]) detrend1 = get_delta(data, mrkt[3], ema[0]) # close - ema13 detrend2 = get_delta(data, mrkt[3], ema[1]) # close - ema26 # ediff1 = get_diff(data[:, ema[0]]) ediff2 = get_diff(data[:, ema[1]]) ediff3 = get_diff(data[:, ema[2]]) # elogdiff1 = get_log_diff(data[:, 11]) # elogdiff2 = get_log_diff(data[:, 12]) # elogdiff3 = get_log_diff(data[:, 13]) return np.array( np.column_stack(( # data[:, 5:6], # hours and minutes # data[:, 8:11], # prices (without open) delta, diff1, diff2, diff3, # logdiff1, logdiff2, logdiff3, detrend1, detrend2, ediff1, ediff2, ediff3, # elogdiff1, elogdiff2, elogdiff3, # data[:, 15:17], # macd data[:, 8:10], data[:, 10] - 50, # atr, cci, rsi # data[:, 20:22], # usd and eur indexes )))