예제 #1
0
파일: model.py 프로젝트: zhouwubai/kaggle
    def detect(self, images, verbose=0):
        """Runs the detection pipeline.
        images: List of images, potentially of different sizes.
        Returns a list of dicts, one dict per image. The dict contains:
        rois: [N, (y1, x1, y2, x2)] detection bounding boxes
        class_ids: [N] int class IDs
        scores: [N] float probability scores for the class IDs
        masks: [H, W, N] instance binary masks
        """
        assert self.mode == "inference", "Create model in inference mode."
        assert len(images) == self.config.BATCH_SIZE,\
            "len(images) must be equal to BATCH_SIZE"

        if verbose:
            utils.log("Processing {} images".format(len(images)))
            for image in images:
                utils.log("image", image)

        # Mold inputs to format expected by the neural network
        molded_images, image_metas, windows = self.mold_inputs(images)

        # Validate image sizes
        # All images in a batch MUST be of the same size
        image_shape = molded_images[0].shape
        for g in molded_images[1:]:
            assert g.shape == image_shape,\
                ("After resizing, all images must have the same size."
                 "Check IMAGE_RESIZE_MODE and image sizes.")

        # Anchors
        anchors = self.get_anchors(image_shape)
        # Duplicate across the batch dimension because Keras requires it
        # TODO: can this be optimized to avoid duplicating the anchors?
        anchors = np.broadcast_to(anchors,
                                  (self.config.BATCH_SIZE, ) + anchors.shape)

        if verbose:
            utils.log("molded_images", molded_images)
            utils.log("image_metas", image_metas)
            utils.log("anchors", anchors)
        # Run object detection
        detections, _, _, mrcnn_mask, _, _, _ =\
            self.keras_model.predict([molded_images,
                                     image_metas, anchors], verbose=0)
        # Process detections
        results = []
        for i, image in enumerate(images):
            final_rois, final_class_ids, final_scores, final_masks =\
                self.unmold_detections(detections[i], mrcnn_mask[i],
                                       image.shape, molded_images[i].shape,
                                       windows[i])
            results.append({
                "rois": final_rois,
                "class_ids": final_class_ids,
                "scores": final_scores,
                "masks": final_masks,
            })
        return results
예제 #2
0
파일: model.py 프로젝트: zhouwubai/kaggle
    def detect_molded(self, molded_images, image_metas, verbose=0):
        """Runs the detection pipeline, but expect inputs that are
        molded already. Used mostly for debugging and inspecting
        the model.
        molded_images: List of images loaded using load_image_gt()
        image_metas: image meta data, also retruned by load_image_gt()
        Returns a list of dicts, one dict per image. The dict contains:
        rois: [N, (y1, x1, y2, x2)] detection bounding boxes
        class_ids: [N] int class IDs
        scores: [N] float probability scores for the class IDs
        masks: [H, W, N] instance binary masks
        """
        assert self.mode == "inference", "Create model in inference mode."
        assert len(molded_images) == self.config.BATCH_SIZE,\
            "Number of images must be equal to BATCH_SIZE"

        if verbose:
            utils.log("Processing {} images".format(len(molded_images)))
            for image in molded_images:
                utils.log("image", image)

        # Validate image sizes
        # All images in a batch MUST be of the same size
        image_shape = molded_images[0].shape
        for g in molded_images[1:]:
            assert g.shape == image_shape, "Images must have the same size"

        # Anchors
        anchors = self.get_anchors(image_shape)
        # Duplicate across the batch dimension because Keras requires it
        # TODO: can this be optimized to avoid duplicating the anchors?
        anchors = np.broadcast_to(anchors,
                                  (self.config.BATCH_SIZE, ) + anchors.shape)

        if verbose:
            utils.log("molded_images", molded_images)
            utils.log("image_metas", image_metas)
            utils.log("anchors", anchors)
        # Run object detection
        detections, _, _, mrcnn_mask, _, _, _ =\
            self.keras_model.predict([molded_images, image_metas, anchors],
                                     verbose=0)
        # Process detections
        results = []
        for i, image in enumerate(molded_images):
            window = [0, 0, image.shape[0], image.shape[1]]
            final_rois, final_class_ids, final_scores, final_masks =\
                self.unmold_detections(detections[i], mrcnn_mask[i],
                                       image.shape, molded_images[i].shape,
                                       window)
            results.append({
                "rois": final_rois,
                "class_ids": final_class_ids,
                "scores": final_scores,
                "masks": final_masks,
            })
        return results
예제 #3
0
파일: model.py 프로젝트: zhouwubai/kaggle
    def run_graph(self, images, outputs, image_metas=None):
        """Runs a sub-set of the computation graph that computes the given
        outputs.
        image_metas: If provided, the images are assumed to be already
            molded (i.e. resized, padded, and noramlized)
        outputs: List of tuples (name, tensor) to compute. The tensors are
            symbolic TensorFlow tensors and the names are for easy tracking.
        Returns an ordered dict of results. Keys are the names received in the
        input and values are Numpy arrays.
        """
        model = self.keras_model

        # Organize desired outputs into an ordered dict
        outputs = OrderedDict(outputs)
        for o in outputs.values():
            assert o is not None

        # Build a Keras function to run parts of the computation graph
        inputs = model.inputs
        if model.uses_learning_phase and not isinstance(
                K.learning_phase(), int):
            inputs += [K.learning_phase()]
        kf = K.function(model.inputs, list(outputs.values()))

        # Prepare inputs
        if image_metas is None:
            molded_images, image_metas, _ = self.mold_inputs(images)
        else:
            molded_images = images
        image_shape = molded_images[0].shape
        # Anchors
        anchors = self.get_anchors(image_shape)
        # Duplicate across the batch dimension because Keras requires it
        # TODO: can this be optimized to avoid duplicating the anchors?
        anchors = np.broadcast_to(anchors,
                                  (self.config.BATCH_SIZE, ) + anchors.shape)
        model_in = [molded_images, image_metas, anchors]

        # Run inference
        if model.uses_learning_phase and not isinstance(
                K.learning_phase(), int):
            model_in.append(0.)
        outputs_np = kf(model_in)

        # Pack the generated Numpy arrays into a a dict and log the results.
        outputs_np = OrderedDict([(k, v)
                                  for k, v in zip(outputs.keys(), outputs_np)])
        for k, v in outputs_np.items():
            utils.log(k, v)
        return outputs_np
예제 #4
0
파일: model.py 프로젝트: zhouwubai/kaggle
    def set_trainable(self,
                      layer_regex,
                      keras_model=None,
                      indent=0,
                      verbose=1):
        """Sets model layers as trainable if their names match
        the given regular expression.
        """
        # Print message on the first call (but not on recursive calls)
        if verbose > 0 and keras_model is None:
            utils.log("Selecting layers to train")

        keras_model = keras_model or self.keras_model

        # In multi-GPU training, we wrap the model. Get layers
        # of the inner model because they have the weights.
        layers = keras_model.inner_model.layers\
            if hasattr(keras_model, "inner_model") else keras_model.layers

        for layer in layers:
            # Is the layer a model?
            if layer.__class__.__name__ == 'Model':
                print("In model: ", layer.name)
                self.set_trainable(layer_regex,
                                   keras_model=layer,
                                   indent=indent + 4)
                continue

            if not layer.weights:
                continue
            # Is it trainable?
            trainable = bool(re.fullmatch(layer_regex, layer.name))
            # Update layer. If layer is a container, update inner layer.
            if layer.__class__.__name__ == 'TimeDistributed':
                layer.layer.trainable = trainable
            else:
                layer.trainable = trainable
            # Print trainble layer names
            if trainable and verbose > 0:
                utils.log("{}{:20}   ({})".format(" " * indent, layer.name,
                                                  layer.__class__.__name__))
예제 #5
0
파일: model.py 프로젝트: zhouwubai/kaggle
    def train(self,
              train_dataset,
              val_dataset,
              learning_rate,
              epochs,
              layers,
              augmentation=None):
        """Train the model.
        train_dataset, val_dataset: Training and validation Dataset objects.
        learning_rate: The learning rate to train with
        epochs: Number of training epochs. Note that previous training epochs
                are considered to be done alreay, so this actually determines
                the epochs to train in total rather than in this particaular
                call.
        layers: Allows selecting wich layers to train. It can be:
            - A regular expression to match layer names to train
            - One of these predefined values:
              heaads: The RPN, classifier and mask heads of the network
              all: All the layers
              3+: Train Resnet stage 3 and up
              4+: Train Resnet stage 4 and up
              5+: Train Resnet stage 5 and up
        augmentation: Optional. An imgaug (https://github.com/aleju/imgaug)
            augmentation. For example, passing imgaug.augmenters.Fliplr(0.5)
            flips images right/left 50% of the time. You can pass complex
            augmentations as well. This augmentation applies 50% of the
            time, and when it does it flips images right/left half the time
            and adds a Gausssian blur with a random sigma in range 0 to 5.
                augmentation = imgaug.augmenters.Sometimes(0.5, [
                    imgaug.augmenters.Fliplr(0.5),
                    imgaug.augmenters.GaussianBlur(sigma=(0.0, 5.0))
                ])
        """
        assert self.mode == "training", "Create model in training mode."

        # Pre-defined layer regular expressions
        layer_regex = {
            # all layers but the backbone
            "heads": r"(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
            # From a specific Resnet stage and up
            "3+":
            r"(res3.*)|(bn3.*)|(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
            "4+":
            r"(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
            "5+": r"(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
            # All layers
            "all": ".*",
        }
        if layers in layer_regex.keys():
            layers = layer_regex[layers]

        # Data generators
        train_generator = data.data_generator(
            train_dataset,
            self.config,
            shuffle=True,
            augmentation=augmentation,
            batch_size=self.config.BATCH_SIZE)

        val_generator = data.data_generator(val_dataset,
                                            self.config,
                                            shuffle=True,
                                            batch_size=self.config.BATCH_SIZE)

        # Callbacks
        callbacks = [
            keras.callbacks.TensorBoard(log_dir=self.log_dir,
                                        histogram_freq=0,
                                        write_graph=True,
                                        write_images=False),
            keras.callbacks.ModelCheckpoint(self.checkpoint_path,
                                            verbose=0,
                                            save_weights_only=True),
        ]

        # Train
        utils.log("\nStarting at epoch {}. LR={}\n".format(
            self.epoch, learning_rate))
        utils.log("Checkpoint Path: {}".format(self.checkpoint_path))
        self.set_trainable(layers)
        self.compile(learning_rate, self.config.LEARNING_MOMENTUM)

        # Work-around for Windows: Keras fails on Windows when using
        # multiprocessing workers. See discussion here:
        # https://github.com/matterport/Mask_RCNN/issues/13#issuecomment-353124009
        if os.name is 'nt':
            workers = 0
        else:
            workers = multiprocessing.cpu_count()

        self.keras_model.fit_generator(
            train_generator,
            initial_epoch=self.epoch,
            epochs=epochs,
            steps_per_epoch=self.config.STEPS_PER_EPOCH,
            callbacks=callbacks,
            validation_data=val_generator,
            validation_steps=self.config.VALIDATION_STEPS,
            max_queue_size=100,
            workers=workers,
            use_multiprocessing=True,
        )
        self.epoch = max(self.epoch, epochs)