예제 #1
0
def test_cosine_greedy_with_arrays_symmetric():
    """Test if matrix with is_symmetric=True works properly."""
    spectrum_1 = Spectrum(mz=numpy.array([100, 200, 300], dtype="float"),
                          intensities=numpy.array([0.1, 0.2, 1.0], dtype="float"))

    spectrum_2 = Spectrum(mz=numpy.array([110, 190, 290], dtype="float"),
                          intensities=numpy.array([0.5, 0.2, 1.0], dtype="float"))
    spectrums = [spectrum_1, spectrum_2]
    cosine_greedy = CosineGreedy()
    scores = cosine_greedy.matrix(spectrums, spectrums, is_symmetric=True)

    assert scores[0][0][0] == pytest.approx(scores[1][1][0], 0.000001), "Expected different cosine score."
    assert scores[0][1][0] == pytest.approx(scores[1][0][0], 0.000001), "Expected different cosine score."
예제 #2
0
def test_cosine_greedy_matrix(symmetric):
    builder = SpectrumBuilder()
    spectrum_1 = builder.with_mz(numpy.array(
        [100, 200, 300], dtype="float")).with_intensities(
            numpy.array([0.1, 0.2, 1.0], dtype="float")).build()

    spectrum_2 = builder.with_mz(numpy.array(
        [110, 190, 290], dtype="float")).with_intensities(
            numpy.array([0.5, 0.2, 1.0], dtype="float")).build()

    spectrums = [spectrum_1, spectrum_2]
    cosine_greedy = CosineGreedy()
    scores = cosine_greedy.matrix(spectrums, spectrums, is_symmetric=symmetric)

    assert scores[0][0][0] == pytest.approx(
        scores[1][1][0], 0.000001), "Expected different cosine score."
    assert scores[0][0]["score"] == pytest.approx(scores[1][1]["score"], 0.000001), \
        "Expected different cosine score."
    assert scores[0][1][0] == pytest.approx(
        scores[1][0][0], 0.000001), "Expected different cosine score."
    assert scores[0][1]["score"] == pytest.approx(scores[1][0]["score"], 0.000001), \
        "Expected different cosine score."
def library_matching(documents_query: List[SpectrumDocument],
                     documents_library: List[SpectrumDocument],
                     model,
                     presearch_based_on=["parentmass", "spec2vec-top10"],
                     ignore_non_annotated: bool = True,
                     include_scores=["spec2vec", "cosine", "modcosine"],
                     intensity_weighting_power: float = 0.5,
                     allowed_missing_percentage: float = 0,
                     cosine_tol: float = 0.005,
                     mass_tolerance: float = 1.0):
    """Selecting potential spectra matches with spectra library.

    Suitable candidates will be selected by 1) top_n Spec2Vec similarity, and 2)
    same precursor mass (within given mz_ppm tolerance(s)).
    For later matching routines, additional scores (cosine, modified cosine)
    are added as well.

    Args:
    --------
    documents_query:
        List containing all spectrum documents that should be queried against the library.
    documents_library:
        List containing all library spectrum documents.
    model:
        Pretrained word2Vec model.
    top_n: int, optional
        Number of entries witht the top_n highest Spec2Vec scores to keep as
        found matches. Default = 10.
    ignore_non_annotated: bool, optional
        If True, only annotated spectra will be considered for matching.
        Default = True.
    cosine_tol: float, optional
        Set tolerance for the cosine and modified cosine score. Default = 0.005
    mass_tolerance
        Specify tolerance for a parentmass match.
    """

    # Initializations
    found_matches = []
    m_mass_matches = None
    m_spec2vec_similarities = None

    def get_metadata(documents):
        metadata = []
        for doc in documents:
            metadata.append(doc._obj.get("smiles"))
        return metadata

    library_spectra_metadata = get_metadata(documents_library)
    if ignore_non_annotated:
        # Get array of all ids for spectra with smiles
        library_ids = np.asarray(
            [i for i, x in enumerate(library_spectra_metadata) if x])
    else:
        library_ids = np.arange(len(documents_library))

    msg = "Presearch must be done either by 'parentmass' and/or 'spec2vec-topX'"
    assert "parentmass" in presearch_based_on or np.any(
        ["spec2vec" in x for x in presearch_based_on]), msg

    # 1. Search for top-n Spec2Vec matches ------------------------------------
    if np.any(["spec2vec" in x for x in presearch_based_on]):
        top_n = int([
            x.split("top")[1] for x in presearch_based_on if "spec2vec" in x
        ][0])
        print("Pre-selection includes spec2vec top {}.".format(top_n))
        spec2vec = Spec2Vec(
            model=model,
            intensity_weighting_power=intensity_weighting_power,
            allowed_missing_percentage=allowed_missing_percentage)
        m_spec2vec_similarities = spec2vec.matrix(
            [documents_library[i] for i in library_ids], documents_query)

        # Select top_n similarity values:
        selection_spec2vec = np.argpartition(m_spec2vec_similarities,
                                             -top_n,
                                             axis=0)[-top_n:, :]
    else:
        selection_spec2vec = np.empty((0, len(documents_query)), dtype="int")

    # 2. Search for parent mass based matches ---------------------------------
    if "parentmass" in presearch_based_on:
        mass_matching = ParentmassMatch(mass_tolerance)
        m_mass_matches = mass_matching.matrix(
            [documents_library[i]._obj for i in library_ids],
            [x._obj for x in documents_query])
        selection_massmatch = []
        for i in range(len(documents_query)):
            selection_massmatch.append(np.where(m_mass_matches[:, i] == 1)[0])
    else:
        selection_massmatch = np.empty((len(documents_query), 0), dtype="int")

    # 3. Combine found matches ------------------------------------------------
    for i in range(len(documents_query)):
        s2v_top_ids = selection_spec2vec[:, i]
        mass_match_ids = selection_massmatch[i]

        all_match_ids = np.unique(np.concatenate(
            (s2v_top_ids, mass_match_ids)))

        if len(all_match_ids) > 0:
            if "modcosine" in include_scores:
                # Get cosine score for found matches
                cosine_similarity = CosineGreedy(tolerance=cosine_tol)
                cosine_scores = []
                for match_id in library_ids[all_match_ids]:
                    cosine_scores.append(
                        cosine_similarity.matrix(
                            documents_library[match_id]._obj,
                            documents_query[i]._obj))
            else:
                cosine_scores = len(all_match_ids) * ["not calculated"]

            if "cosine" in include_scores:
                # Get modified cosine score for found matches
                mod_cosine_similarity = ModifiedCosine(tolerance=cosine_tol)
                mod_cosine_scores = []
                for match_id in library_ids[all_match_ids]:
                    mod_cosine_scores.append(
                        mod_cosine_similarity.matrix(
                            documents_library[match_id]._obj,
                            documents_query[i]._obj))
            else:
                mod_cosine_scores = len(all_match_ids) * ["not calculated"]

            matches_df = pd.DataFrame(
                {
                    "cosine_score": [x[0] for x in cosine_scores],
                    "cosine_matches": [x[1] for x in cosine_scores],
                    "mod_cosine_score": [x[0] for x in mod_cosine_scores],
                    "mod_cosine_matches": [x[1] for x in mod_cosine_scores]
                },
                index=library_ids[all_match_ids])

            if m_mass_matches is not None:
                matches_df["mass_match"] = m_mass_matches[all_match_ids, i]

            if m_spec2vec_similarities is not None:
                matches_df["s2v_score"] = m_spec2vec_similarities[
                    all_match_ids, i]
            elif "spec2vec" in include_scores:
                spec2vec_similarity = Spec2Vec(
                    model=model,
                    intensity_weighting_power=intensity_weighting_power,
                    allowed_missing_percentage=allowed_missing_percentage)
                spec2vec_scores = []
                for match_id in library_ids[all_match_ids]:
                    spec2vec_scores.append(
                        spec2vec_similarity.pair(documents_library[match_id],
                                                 documents_query[i]))
                matches_df["s2v_score"] = spec2vec_scores
            found_matches.append(matches_df.fillna(0))
        else:
            found_matches.append([])

    return found_matches