def run_diagnose(self): standards = serial.objFromFile('prob_groups.txt') c = ClusterBridge() name_net = c.getNameNet() for thres in range(1, 10): # Experimental def lengthFilter(triplet): names = triplet[1] return len(names) == thres filtered_net = filter(lengthFilter, name_net) # Experimental-end observed = gstat.convertNameNet2Observed(filtered_net) prediction = matchstat.convertObserved2Prediction(standards, observed) # Format becomes: # [(true1, true2,...), (predict1, predict2, ...), (meta1, meta2, ...)] pairs = matchstat.unzipGroupPrediction(prediction) num_label = 4 tester = tests.tester(num_label) assert(len(pairs) >= 2) # sanity check tester.record(pairs[0], pairs[1]) tester.recordMeta(pairs[2]) #print thres print "Accuracy:", tester.accuracy() print "Conf matrix:" print tester.confusionMatrix(friends.groupToNumeric)
def run(self): standards = serial.objFromFile('prob_groups.txt') c = ClusterBridge() name_net = c.getNameNet() observed = gstat.convertNameNet2Observed(name_net) prediction = matchstat.convertObserved2Prediction(standards, observed) # Format becomes: # [(true1, true2,...), (predict1, predict2, ...), (meta1, meta2, ...)] pairs = matchstat.unzipGroupPrediction(prediction) num_label = 4 tester = tests.tester(num_label) assert(len(pairs) >= 2) # sanity check tester.record(pairs[0], pairs[1]) tester.recordMeta(pairs[2]) #print thres print "Accuracy:", tester.accuracy() print "Conf matrix:" print tester.confusionMatrix(friends.groupToNumeric)