def test_orbital_field_matrix(self): ofm_maker = OrbitalFieldMatrix(flatten=False) ofm = ofm_maker.featurize(self.diamond)[0] mtarget = np.zeros((32, 32)) mtarget[1][1] = 1.4789015 # 1.3675444 mtarget[1][3] = 1.4789015 # 1.3675444 mtarget[3][1] = 1.4789015 # 1.3675444 mtarget[3][3] = 1.4789015 # 1.3675444 if for a coord# of exactly 4 for i in range(32): for j in range(32): if not i in [1, 3] and not j in [1, 3]: self.assertEqual(ofm[i, j], 0.0) mtarget = np.matrix(mtarget) self.assertAlmostEqual( np.linalg.norm(ofm - mtarget), 0.0, places=4) ofm_maker = OrbitalFieldMatrix(True, flatten=False) ofm = ofm_maker.featurize(self.diamond)[0] mtarget = np.zeros((39, 39)) mtarget[1][1] = 1.4789015 mtarget[1][3] = 1.4789015 mtarget[3][1] = 1.4789015 mtarget[3][3] = 1.4789015 mtarget[1][33] = 1.4789015 mtarget[3][33] = 1.4789015 mtarget[33][1] = 1.4789015 mtarget[33][3] = 1.4789015 mtarget[33][33] = 1.4789015 mtarget = np.matrix(mtarget) self.assertAlmostEqual( np.linalg.norm(ofm - mtarget), 0.0, places=4) ofm_flat = OrbitalFieldMatrix(period_tag=False, flatten=True) self.assertEqual(len(ofm_flat.feature_labels()), 1024) ofm_flat = OrbitalFieldMatrix(period_tag=True, flatten=True) self.assertEqual(len(ofm_flat.feature_labels()), 1521) ofm_vector = ofm_flat.featurize(self.diamond) for ix in [40, 42, 72, 118, 120, 150, 1288, 1320]: self.assertAlmostEqual(ofm_vector[ix], 1.4789015345821415)
def test_orbital_field_matrix(self): ofm_maker = OrbitalFieldMatrix() ofm = ofm_maker.featurize(self.diamond)[0] mtarget = np.zeros((32, 32)) mtarget[1][1] = 1.4789015 # 1.3675444 mtarget[1][3] = 1.4789015 # 1.3675444 mtarget[3][1] = 1.4789015 # 1.3675444 mtarget[3][3] = 1.4789015 # 1.3675444 if for a coord# of exactly 4 for i in range(32): for j in range(32): if not i in [1, 3] and not j in [1, 3]: self.assertEqual(ofm[i, j], 0.0) mtarget = np.matrix(mtarget) self.assertAlmostEqual( np.linalg.norm(ofm - mtarget), 0.0, places=4) ofm_maker = OrbitalFieldMatrix(True) ofm = ofm_maker.featurize(self.diamond)[0] mtarget = np.zeros((39, 39)) mtarget[1][1] = 1.4789015 mtarget[1][3] = 1.4789015 mtarget[3][1] = 1.4789015 mtarget[3][3] = 1.4789015 mtarget[1][33] = 1.4789015 mtarget[3][33] = 1.4789015 mtarget[33][1] = 1.4789015 mtarget[33][3] = 1.4789015 mtarget[33][33] = 1.4789015 mtarget = np.matrix(mtarget) self.assertAlmostEqual( np.linalg.norm(ofm - mtarget), 0.0, places=4) ofm_flat = OrbitalFieldMatrix(period_tag=False, flatten=True) self.assertEqual(len(ofm_flat.feature_labels()), 1024) ofm_flat = OrbitalFieldMatrix(period_tag=True, flatten=True) self.assertEqual(len(ofm_flat.feature_labels()), 1521) ofm_vector = ofm_flat.featurize(self.diamond) for ix in [40, 42, 72, 118, 120, 150, 1288, 1320]: self.assertAlmostEqual(ofm_vector[ix], 1.4789015345821415)
# Featurize dataframe with OFM and time it start = time.monotonic() ofm = OrbitalFieldMatrix(period_tag=ROW) ofm.set_n_jobs(NJOBS) df = ofm.fit_featurize_dataframe(df, 'structure') finish = time.monotonic() print("TIME TO FEATURIZE OFM %f SECONDS" % (finish - start)) print() # Get OFM descriptor and set up KRR model krr = KernelRidge() hpsel = GridSearchCV(krr, params['orbital field matrix'], cv=inner_cv, refit=True) X = df[ofm.feature_labels()].to_numpy() # Flatten each OFM to form a vector descriptor XLIST = [] for i in range(len(X)): XLIST.append(X[i].flatten()) X = np.array(XLIST) print(X.shape) Y = df['formation_energy_per_atom'].to_numpy() mae, rmse, r2 = 0, 0, 0 # Evaluate OFM start = time.monotonic() for train_index, test_index in kf.split(X): X_train, X_test = X[train_index], X[test_index] Y_train, Y_test = Y[train_index], Y[test_index] hpsel.fit(X_train, Y_train) print("--- OFM PARAM OPT")
print ("ROW ELEMS", ROW) # Featurize dataframe with OFM and time it start = time.monotonic() ofm = OrbitalFieldMatrix(period_tag=ROW) ofm.set_n_jobs(NJOBS) df = ofm.fit_featurize_dataframe(df, 'structure') finish = time.monotonic() print("TIME TO FEATURIZE OFM %f SECONDS" % (finish-start)) print() # Get OFM descriptor and set up KRR model krr = KernelRidge() hpsel = GridSearchCV(krr, params['orbital field matrix'], cv=inner_cv, refit=True) X = df[ofm.feature_labels()].as_matrix() # Flatten each OFM to form a vector descriptor XLIST = [] for i in range(len(X)): XLIST.append(X[i].flatten()) X = np.array(XLIST) print(X.shape) Y = df['formation_energy_per_atom'].as_matrix() mae, rmse, r2 = 0, 0, 0 # Evaluate OFM start = time.monotonic() for train_index, test_index in kf.split(X): X_train, X_test = X[train_index], X[test_index] Y_train, Y_test = Y[train_index], Y[test_index] hpsel.fit(X_train, Y_train) print("--- OFM PARAM OPT")