def control_plot(data: (List[int], List[float], pd.Series, np.array), upper_control_limit: (int, float), lower_control_limit: (int, float), highlight_beyond_limits: bool = True, highlight_zone_a: bool = True, highlight_zone_b: bool = True, highlight_zone_c: bool = True, highlight_trend: bool = True, highlight_mixture: bool = True, highlight_stratification: bool = True, highlight_overcontrol: bool = True, ax: Axis = None): """ Create a control plot based on the input data. :param data: a list, pandas.Series, or numpy.array representing the data set :param upper_control_limit: an integer or float which represents the upper control limit, commonly called the UCL :param lower_control_limit: an integer or float which represents the upper control limit, commonly called the UCL :param highlight_beyond_limits: True if points beyond limits are to be highlighted :param highlight_zone_a: True if points that are zone A violations are to be highlighted :param highlight_zone_b: True if points that are zone B violations are to be highlighted :param highlight_zone_c: True if points that are zone C violations are to be highlighted :param highlight_trend: True if points that are trend violations are to be highlighted :param highlight_mixture: True if points that are mixture violations are to be highlighted :param highlight_stratification: True if points that are stratification violations are to be highlighted :param highlight_overcontrol: True if points that are overcontrol violations are to be hightlighted :param ax: an instance of matplotlib.axis.Axis :return: None """ data = coerce(data) if ax is None: fig, ax = plt.subplots() ax.plot(data) ax.set_title('Zone Control Chart') spec_range = (upper_control_limit - lower_control_limit) / 2 spec_center = lower_control_limit + spec_range zone_c_upper_limit = spec_center + spec_range / 3 zone_c_lower_limit = spec_center - spec_range / 3 zone_b_upper_limit = spec_center + 2 * spec_range / 3 zone_b_lower_limit = spec_center - 2 * spec_range / 3 zone_a_upper_limit = spec_center + spec_range zone_a_lower_limit = spec_center - spec_range ax.axhline(spec_center, linestyle='--', color='red', alpha=0.6) ax.axhline(zone_c_upper_limit, linestyle='--', color='red', alpha=0.5) ax.axhline(zone_c_lower_limit, linestyle='--', color='red', alpha=0.5) ax.axhline(zone_b_upper_limit, linestyle='--', color='red', alpha=0.3) ax.axhline(zone_b_lower_limit, linestyle='--', color='red', alpha=0.3) ax.axhline(zone_a_upper_limit, linestyle='--', color='red', alpha=0.2) ax.axhline(zone_a_lower_limit, linestyle='--', color='red', alpha=0.2) left, right = ax.get_xlim() right_plus = (right - left) * 0.01 + right ax.text(right_plus, upper_control_limit, s='UCL', va='center') ax.text(right_plus, lower_control_limit, s='LCL', va='center') ax.text(right_plus, (spec_center + zone_c_upper_limit) / 2, s='Zone C', va='center') ax.text(right_plus, (spec_center + zone_c_lower_limit) / 2, s='Zone C', va='center') ax.text(right_plus, (zone_b_upper_limit + zone_c_upper_limit) / 2, s='Zone B', va='center') ax.text(right_plus, (zone_b_lower_limit + zone_c_lower_limit) / 2, s='Zone B', va='center') ax.text(right_plus, (zone_a_upper_limit + zone_b_upper_limit) / 2, s='Zone A', va='center') ax.text(right_plus, (zone_a_lower_limit + zone_b_lower_limit) / 2, s='Zone A', va='center') plot_params = {'alpha': 0.3, 'zorder': -10, 'markersize': 14} if highlight_beyond_limits: beyond_limits_violations = control_beyond_limits( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(beyond_limits_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(beyond_limits_violations, 'o', color='red', label='beyond limits', **plot_params) if highlight_zone_a: zone_a_violations = control_zone_a( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_a_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_a_violations, 'o', color='orange', label='zone a violations', **plot_params) if highlight_zone_b: zone_b_violations = control_zone_b( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_b_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_b_violations, 'o', color='blue', label='zone b violations', **plot_params) if highlight_zone_c: zone_c_violations = control_zone_c( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_c_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_c_violations, 'o', color='green', label='zone c violations', **plot_params) if highlight_trend: zone_trend_violations = control_zone_trend(data=data) if len(zone_trend_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_trend_violations, 'o', color='purple', label='trend violations', **plot_params) if highlight_mixture: zone_mixture_violations = control_zone_mixture( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_mixture_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_mixture_violations, 'o', color='brown', label='mixture violations', **plot_params) if highlight_stratification: zone_stratification_violations = control_zone_stratification( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_stratification_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_stratification_violations, 'o', color='orange', label='stratification violations', **plot_params) if highlight_overcontrol: zone_overcontrol_violations = control_zone_overcontrol( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_overcontrol_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_overcontrol_violations, 'o', color='blue', label='overcontrol violations', **plot_params) ax.legend()
def ppk_plot(data: (List[int], List[float], pd.Series, np.array), upper_control_limit: (int, float), lower_control_limit: (int, float), threshold_percent: float = 0.001, ax: Axis = None): """ Shows the statistical distribution of the data along with CPK and limits. :param data: a list, pandas.Series, or numpy.array representing the data set :param upper_control_limit: an integer or float which represents the upper control limit, commonly called the UCL :param lower_control_limit: an integer or float which represents the upper control limit, commonly called the UCL :param threshold_percent: the threshold at which % of units above/below the number will display on the plot :param ax: an instance of matplotlig.axis.Axis :return: None """ data = coerce(data) mean = data.mean() std = data.std() if ax is None: fig, ax = plt.subplots() ax.hist(data, density=True, label='data', alpha=0.3) x = np.linspace(mean - 4 * std, mean + 4 * std, 100) pdf = stats.norm.pdf(x, mean, std) ax.plot(x, pdf, label='normal fit', alpha=0.7) bottom, top = ax.get_ylim() ax.axvline(mean, linestyle='--') ax.text(mean, top * 1.01, s='$\mu$', ha='center') ax.axvline(mean + std, alpha=0.6, linestyle='--') ax.text(mean + std, top * 1.01, s='$\sigma$', ha='center') ax.axvline(mean - std, alpha=0.6, linestyle='--') ax.text(mean - std, top * 1.01, s='$-\sigma$', ha='center') ax.axvline(mean + 2 * std, alpha=0.4, linestyle='--') ax.text(mean + 2 * std, top * 1.01, s='$2\sigma$', ha='center') ax.axvline(mean - 2 * std, alpha=0.4, linestyle='--') ax.text(mean - 2 * std, top * 1.01, s='-$2\sigma$', ha='center') ax.axvline(mean + 3 * std, alpha=0.2, linestyle='--') ax.text(mean + 3 * std, top * 1.01, s='$3\sigma$', ha='center') ax.axvline(mean - 3 * std, alpha=0.2, linestyle='--') ax.text(mean - 3 * std, top * 1.01, s='-$3\sigma$', ha='center') ax.fill_between(x, pdf, where=x < lower_control_limit, facecolor='red', alpha=0.5) ax.fill_between(x, pdf, where=x > upper_control_limit, facecolor='red', alpha=0.5) lower_percent = 100.0 * stats.norm.cdf(lower_control_limit, mean, std) lower_percent_text = f'{lower_percent:.02f}% < LCL' if lower_percent > threshold_percent else None higher_percent = 100.0 - 100.0 * stats.norm.cdf(upper_control_limit, mean, std) higher_percent_text = f'{higher_percent:.02f}% > UCL' if higher_percent > threshold_percent else None left, right = ax.get_xlim() bottom, top = ax.get_ylim() cpk = calc_ppk(data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) lower_sigma_level = (mean - lower_control_limit) / std if lower_sigma_level < 6.0: ax.axvline(lower_control_limit, color='red', alpha=0.25, label='limits') ax.text(lower_control_limit, top * 0.95, s=f'$-{lower_sigma_level:.01f}\sigma$', ha='center') else: ax.text(left, top * 0.95, s=f'limit > $-6\sigma$', ha='left') upper_sigma_level = (upper_control_limit - mean) / std if upper_sigma_level < 6.0: ax.axvline(upper_control_limit, color='red', alpha=0.25) ax.text(upper_control_limit, top * 0.95, s=f'${upper_sigma_level:.01f}\sigma$', ha='center') else: ax.text(right, top * 0.95, s=f'limit > $6\sigma$', ha='right') strings = [f'Ppk = {cpk:.02f}'] strings.append(f'$\mu = {mean:.3g}$') strings.append(f'$\sigma = {std:.3g}$') if lower_percent_text: strings.append(lower_percent_text) if higher_percent_text: strings.append(higher_percent_text) props = dict(boxstyle='round', facecolor='white', alpha=0.75, edgecolor='grey') ax.text(right - (right - left) * 0.05, 0.85 * top, '\n'.join(strings), bbox=props, ha='right', va='top') ax.legend(loc='lower right')