def pulses(xs, size=(10, 4), c=None): c = np.linspace(0, 1, xs.shape[0]) if isinstance(c, type(None)) else c color = cm.coolwarm_r(c) fig = plt.figure(figsize=size) for xi, ci in zip(xs, color): plt.plot(xi, color=ci) plt.title("Centered pulses") return fig
def plot_maprmax(savefilename, plotname): with open(savefilename, 'rb') as savefile: bf = numpy.array(pickle.load(savefile)) samples = numpy.array(pickle.load(savefile)) bf_g15 = numpy.array(pickle.load(savefile)) samples_g15 = numpy.array(pickle.load(savefile)) bf_zero = numpy.array(pickle.load(savefile)) samples_zero = numpy.array(pickle.load(savefile)) maps = define_rcsample.MAPs() plotthis = numpy.zeros(len(bf)) + numpy.nan for ii, map in enumerate(maps.map()): tmed = numpy.median( numpy.exp(samples[ii, 3])[True - numpy.isnan(numpy.exp(samples[ii, 3]))]) if tmed < 5.: tmed = 0. plotthis[ii] = tmed bovy_plot.bovy_print() maps.plot(plotthis, vmin=5., vmax=13., minnstar=15, zlabel=r'$R_{\mathrm{peak}}\,(\mathrm{kpc})$', shrink=0.68, cmap='coolwarm_r') # Sequences haloc = define_rcsample.highalphalocus() bovy_plot.bovy_plot(haloc[:, 0], haloc[:, 1], '-', color='0.75', lw=2.5, overplot=True) haloc = define_rcsample.lowalphalocus() haloc = haloc[(haloc[:, 0] > -0.55) * (haloc[:, 0] < 0.225)] bovy_plot.bovy_plot(haloc[:, 0], haloc[:, 1], '-', color='0.75', lw=2.5, overplot=True) # Label #t= pyplot.text(-0.51,0.235,r'$\mathrm{single}$', # size=16.,color='w') #t.set_bbox(dict(alpha=0.5,color=cm.coolwarm(0.), # edgecolor='none')) #t= pyplot.text(-0.475,0.195,r'$\mathrm{exponential}$', # size=16.,color='w') t = pyplot.text(-0.625, 0.195, r'$R_{\mathrm{peak}} < 5\,\mathrm{kpc}$', size=16., color='w') t.set_bbox(dict(alpha=0.5, color=cm.coolwarm_r(0.), edgecolor='none')) pyplot.tight_layout() bovy_plot.bovy_end_print(plotname, dpi=300) return None
def plot_maprmax(savefilename,plotname): with open(savefilename,'rb') as savefile: bf= numpy.array(pickle.load(savefile)) samples= numpy.array(pickle.load(savefile)) bf_g15= numpy.array(pickle.load(savefile)) samples_g15= numpy.array(pickle.load(savefile)) bf_zero= numpy.array(pickle.load(savefile)) samples_zero= numpy.array(pickle.load(savefile)) maps= define_rcsample.MAPs() plotthis= numpy.zeros(len(bf))+numpy.nan for ii, map in enumerate(maps.map()): tmed= numpy.median(numpy.exp(samples[ii,3])[True-numpy.isnan(numpy.exp(samples[ii,3]))]) if tmed < 5.: tmed= 0. plotthis[ii]= tmed bovy_plot.bovy_print() maps.plot(plotthis, vmin=5.,vmax=13., minnstar=15, zlabel=r'$R_{\mathrm{peak}}\,(\mathrm{kpc})$', shrink=0.68,cmap='coolwarm_r') # Sequences haloc= define_rcsample.highalphalocus() bovy_plot.bovy_plot(haloc[:,0],haloc[:,1],'-',color='0.75', lw=2.5,overplot=True) haloc= define_rcsample.lowalphalocus() haloc= haloc[(haloc[:,0] > -0.55)*(haloc[:,0] < 0.225)] bovy_plot.bovy_plot(haloc[:,0],haloc[:,1],'-',color='0.75', lw=2.5,overplot=True) # Label #t= pyplot.text(-0.51,0.235,r'$\mathrm{single}$', # size=16.,color='w') #t.set_bbox(dict(alpha=0.5,color=cm.coolwarm(0.), # edgecolor='none')) #t= pyplot.text(-0.475,0.195,r'$\mathrm{exponential}$', # size=16.,color='w') t= pyplot.text(-0.625,0.195,r'$R_{\mathrm{peak}} < 5\,\mathrm{kpc}$', size=16.,color='w') t.set_bbox(dict(alpha=0.5,color=cm.coolwarm_r(0.), edgecolor='none')) pyplot.tight_layout() bovy_plot.bovy_end_print(plotname,dpi=300) return None
def map_color(val): color = cm.coolwarm_r(val/max_val) return '#%02x%02x%02x' % (round(color[0]*255), round(color[1]*255), round(color[2]*255))
ssfr ) - 1 # --- correct SFR for duration (WILL NOT BE NEEDED IN FUTURE) ssfr += 9 # convert to Gyr^-1 # --- apply mass cut s = np.log10(mstar) > 9. # --- add scatter plot color-coded by sSFR norm = mpl.colors.Normalize(vmin=-0.5, vmax=1.5) # +1 gets rid of the yellow colour ax.scatter(VJ[s], UV[s], c=cm.coolwarm_r(norm(ssfr[s])), s=1, alpha=0.5, zorder=1) # --- UVJ selection region UVJ_region = [[-1., 0.75, 1.4, 1.4], [1.2, 1.2, 1.75, 2.0]] ax.fill_between(*UVJ_region, [xlims[1]] * len(UVJ_region[0]), color='k', alpha=0.1) ax.plot(*UVJ_region, c='k', lw=1) # --- add redshift label
# sampling frequency sampl_freq = 200 # total nr of samples for 1h NSAMP = sampl_freq * 60 * min_compute comp_colors = {"Z": "orange", "N": "blue", "E": "green"} #%% Settings win_sizes = [30, 20, 15, 10, 5, 1] win_size = 1 components = ("Z", "N", "E") component = "E" winsize_colors = [cm.coolwarm_r(x) for x in np.linspace(0, 1, len(win_sizes))] depths = [0, 100, 200, 300, 400, 500] # define Modus for plotting modus = "norm_stack" #%% 3D MFP ### COMP-ANALYSIS: norm_stack if modus == "norm_stack": # stack normalized beampower of all windows (one component) with open(r"C:\Users\Philip\Desktop\MA\Data\MFP_norm_stacked.pickle", 'rb') as pickle_dict: MFP_norm_stacked = pickle.load(pickle_dict)