def create_line_collection(net, lines=None, use_line_geodata=True, infofunc=None, cmap=None, norm=None, picker=False, z=None, cbar_title="Line Loading [%]", **kwargs): """ Creates a matplotlib line collection of pandapower lines. Input: **net** (pandapowerNet) - The pandapower network OPTIONAL: **lines** (list, None) - The lines for which the collections are created. If None, all lines in the network are considered. *use_line_geodata** (bool, True) - defines if lines patches are based on net.line_geodata of the lines (True) or on net.bus_geodata of the connected buses (False) **infofunc** (function, None) - infofunction for the patch element **kwargs - key word arguments are passed to the patch function """ lines = net.line_geodata.index.tolist() if lines is None and use_line_geodata else \ net.line.index.tolist() if lines is None and not use_line_geodata else list(lines) if len(lines) == 0: return None if use_line_geodata: data = [(net.line_geodata.coords.loc[line], infofunc(line) if infofunc else []) for line in lines if line in net.line_geodata.index] else: data = [([(net.bus_geodata.x.at[a], net.bus_geodata.y.at[a]), (net.bus_geodata.x.at[b], net.bus_geodata.y.at[b])], infofunc(line) if infofunc else []) for line, (a, b) in net.line[["from_bus", "to_bus"]].iterrows() if line in lines and a in net.bus_geodata.index and b in net.bus_geodata.index] data, info = list(zip(*data)) # This would be done anyways by matplotlib - doing it explicitly makes it a) clear and # b) prevents unexpected behavior when observing colors being "none" lc = LineCollection(data, picker=picker, **kwargs) lc.line_indices = np.array(lines) if cmap: if z is None: z = net.res_line.loading_percent.loc[lines] lc.set_cmap(cmap) lc.set_norm(norm) lc.set_array(z) lc.has_colormap = True lc.cbar_title = "Line Loading [%]" lc.info = info return lc
def create_trafo_connection_collection(net, trafos=None, bus_geodata=None, infofunc=None, cmap=None, clim=None, norm=None, z=None, cbar_title="Transformer Loading", **kwargs): """ Creates a matplotlib line collection of pandapower transformers. Input: **net** (pandapowerNet) - The pandapower network OPTIONAL: **trafos** (list, None) - The transformers for which the collections are created. If None, all transformers in the network are considered. **bus_geodata** (DataFrame, None) - coordinates to use for plotting If None, net["bus_geodata"] is used **infofunc** (function, None) - infofunction for the patch element **kwargs - key word arguments are passed to the patch function OUTPUT: **lc** - line collection """ trafos = net.trafo if trafos is None else net.trafo.loc[trafos] if bus_geodata is None: bus_geodata = net["bus_geodata"] hv_geo = list(zip(bus_geodata.loc[trafos["hv_bus"], "x"].values, bus_geodata.loc[trafos["hv_bus"], "y"].values)) lv_geo = list(zip(bus_geodata.loc[trafos["lv_bus"], "x"].values, bus_geodata.loc[trafos["lv_bus"], "y"].values)) tg = list(zip(hv_geo, lv_geo)) info = [infofunc(tr) if infofunc is not None else [] for tr in trafos.index.values] lc = LineCollection([(tgd[0], tgd[1]) for tgd in tg], **kwargs) lc.info = info if cmap is not None: if z is None: z = net.res_trafo.loading_percent.loc[trafos.index] lc.set_cmap(cmap) lc.set_norm(norm) if clim is not None: lc.set_clim(clim) lc.set_array(np.ma.masked_invalid(z)) lc.has_colormap = True lc.cbar_title = cbar_title return lc
def create_line_collection(net, lines=None, line_geodata=None, bus_geodata=None, use_bus_geodata=False, infofunc=None, cmap=None, norm=None, picker=False, z=None, cbar_title="Line Loading [%]", clim=None, **kwargs): """ Creates a matplotlib line collection of pandapower lines. Input: **net** (pandapowerNet) - The pandapower network OPTIONAL: **lines** (list, None) - The lines for which the collections are created. If None, all lines in the network are considered. **line_geodata** (DataFrame, None) - coordinates to use for plotting If None, net["line_geodata"] is used **infofunc** (function, None) - infofunction for the patch element **kwargs - key word arguments are passed to the patch function OUTPUT: **lc** - line collection """ lines = net.line.index.tolist() if lines is None else list(lines) if len(lines) == 0: return None if line_geodata is None: line_geodata = net["line_geodata"] if bus_geodata is None: bus_geodata = net["bus_geodata"] if len(lines) == 0: return None if use_bus_geodata: data = [ ([(bus_geodata.at[a, "x"], bus_geodata.at[a, "y"]), (bus_geodata.at[b, "x"], bus_geodata.at[b, "y"])], infofunc(line) if infofunc else []) for line, (a, b) in net.line.loc[lines, ["from_bus", "to_bus"]].iterrows() if a in bus_geodata.index.values and b in bus_geodata.index.values ] else: data = [(line_geodata.loc[line, "coords"], infofunc(line) if infofunc else []) for line in lines if line in line_geodata.index.values] if len(data) == 0: return None data, info = list(zip(*data)) # This would be done anyways by matplotlib - doing it explicitly makes it a) clear and # b) prevents unexpected behavior when observing colors being "none" lc = LineCollection(data, picker=picker, **kwargs) lc.line_indices = np.array(lines) if cmap: if z is None: z = net.res_line.loading_percent.loc[lines] lc.set_cmap(cmap) lc.set_norm(norm) if clim is not None: lc.set_clim(clim) lc.set_array(np.array(z)) lc.has_colormap = True lc.cbar_title = cbar_title lc.info = info return lc
def create_trafo3w_collection(net, trafo3ws=None, picker=False, infofunc=None, cmap=None, norm=None, z=None, clim=None, cbar_title="3W-Transformer Loading", plot_colormap=True, **kwargs): """ Creates a matplotlib line collection of pandapower transformers. Input: **net** (pandapowerNet) - The pandapower network OPTIONAL: **trafo3ws** (list, None) - The three winding transformers for which the collections are created. If None, all three winding transformers in the network are considered. **picker** (bool, False) - picker argument passed to the patch collection **infofunc** (function, None) - infofunction for the patch element **kwargs - key word arguments are passed to the patch function OUTPUT: **lc** - line collection **pc** - patch collection """ trafo3ws = get_index_array(trafo3ws, net.trafo3w.index) trafo3w_table = net.trafo3w.loc[trafo3ws] lines = [] circles = [] infos = [] color = kwargs.pop("color", "k") linewidth = kwargs.pop("linewidths", 2.) if cmap is not None and z is None: z = net.res_trafo3w.loading_percent for i, idx in enumerate(trafo3w_table.index): # get bus geodata p1 = net.bus_geodata[["x", "y"]].loc[net.trafo3w.at[idx, "hv_bus"]].values p2 = net.bus_geodata[["x", "y"]].loc[net.trafo3w.at[idx, "mv_bus"]].values p3 = net.bus_geodata[["x", "y"]].loc[net.trafo3w.at[idx, "lv_bus"]].values if np.all(p1 == p2) and np.all(p1 == p3): continue p = np.array([p1, p2, p3]) # determine center of buses and minimum distance center-buses center = sum(p) / 3 d = np.linalg.norm(p - center, axis=1) r = d.min() / 3 # determine closest bus to center and vector from center to circle midpoint in closest # direction closest = d.argmin() to_closest = (p[closest] - center) / d[closest] * 2 * r / 3 # determine vectors from center to circle midpoint order = list(range(closest, 3)) + list(range(closest)) cm = np.empty((3, 2)) cm[order.pop(0)] = to_closest ang = 2 * np.pi / 3 # 120 degree cm[order.pop(0)] = _rotate_dim2(to_closest, ang) cm[order.pop(0)] = _rotate_dim2(to_closest, -ang) # determine midpoints of circles m = center + cm # determine endpoints of circles e = (center - p) * (1 - 5 * r / 3 / d).reshape(3, 1) + p # save circle and line collection data ec = color if cmap is None else cmap(norm(z.at[idx])) for j in range(3): circles.append(Circle(m[j], r, fc=(1, 0, 0, 0), ec=ec)) lines.append([p[j], e[j]]) if infofunc is not None: infos.append(infofunc(i)) infos.append(infofunc(i)) if len(circles) == 0: return None, None lc = LineCollection(lines, color=color, picker=picker, linewidths=linewidth, **kwargs) lc.info = infos pc = PatchCollection(circles, match_original=True, picker=picker, linewidth=linewidth, **kwargs) pc.info = infos if cmap is not None: z_duplicated = np.repeat(z.values, 3) lc.set_cmap(cmap) lc.set_norm(norm) if clim is not None: lc.set_clim(clim) lc.set_array(np.ma.masked_invalid(z_duplicated)) lc.has_colormap = plot_colormap lc.cbar_title = cbar_title return lc, pc
def create_line_collection(net, lines=None, line_geodata=None, bus_geodata=None, use_bus_geodata=False, infofunc=None, cmap=None, norm=None, picker=False, z=None, cbar_title="Line Loading [%]", clim=None, **kwargs): """ Creates a matplotlib line collection of pandapower lines. Input: **net** (pandapowerNet) - The pandapower network OPTIONAL: **lines** (list, None) - The lines for which the collections are created. If None, all lines in the network are considered. **line_geodata** (DataFrame, None) - coordinates to use for plotting. If None, net["line_geodata"] is used **bus_geodata** (DataFrame, None) - coordinates to use for plotting If None, net["bus_geodata"] is used **use_bus_geodata** (bool, False) - Defines whether bus or line geodata are used. **infofunc** (function, None) - infofunction for the patch element **cmap** - colormap for the patch colors **norm** (matplotlib norm object, None) - matplotlib norm object **picker** (bool, False) - picker argument passed to the patch collection **z** (array, None) - array of bus voltage magnitudes for colormap. Used in case of given cmap. If None net.res_bus.vm_pu is used. **cbar_title** (str, "Bus Voltage [pu]") - colormap bar title in case of given cmap **clim** (tuple of floats, None) - setting the norm limits for image scaling **kwargs - key word arguments are passed to the patch function OUTPUT: **lc** - line collection """ if use_bus_geodata: linetab = net.line if lines is None else net.line.loc[lines] lines = net.line.index.tolist() if lines is None else list(lines) if len(lines) == 0: return None if line_geodata is None: line_geodata = net["line_geodata"] if bus_geodata is None: bus_geodata = net["bus_geodata"] if len(lines) == 0: return None lines_with_geo = [] if use_bus_geodata: data = [] buses_with_geodata = bus_geodata.index.values bg_dict = bus_geodata.to_dict() #transforming to dict to make lookup faster for line, fb, tb in zip(linetab.index, linetab.from_bus.values, linetab.to_bus.values): if fb in buses_with_geodata and tb in buses_with_geodata: lines_with_geo.append(line) data.append(([(bg_dict["x"][fb], bg_dict["y"][fb]), (bg_dict["x"][tb], bg_dict["y"][tb])], infofunc(line) if infofunc else[])) lines_without_geo = set(lines)-set(lines_with_geo) if lines_without_geo: logger.warning("Could not plot lines %s. Bus geodata is missing for those lines!" % lines_without_geo) else: data = [] for line in lines: if line in line_geodata.index.values: lines_with_geo.append(line) data.append((line_geodata.loc[line, "coords"], infofunc(line) if infofunc else [])) lines_without_geo = set(lines)-set(lines_with_geo) if len(lines_without_geo) > 0: logger.warning("Could not plot lines %s. Line geodata is missing for those lines!" % lines_without_geo) if len(data) == 0: return None data, info = list(zip(*data)) # This would be done anyways by matplotlib - doing it explicitly makes it a) clear and # b) prevents unexpected behavior when observing colors being "none" lc = LineCollection(data, picker=picker, **kwargs) lc.line_indices = np.array(lines_with_geo) if cmap is not None: if z is None: z = net.res_line.loading_percent.loc[lines_with_geo] lc.set_cmap(cmap) lc.set_norm(norm) if clim is not None: lc.set_clim(clim) lc.set_array(np.array(z)) lc.has_colormap = True lc.cbar_title = cbar_title lc.info = info return lc