def __init__(self, imageFileName, ax): """Constructor.""" self.ax = ax self.imAxes = None self.image = mpimg.open(imageFileName) self.figure = self.ax.get_figure() self.dx = 0 self.dy = 0
def __init__(self, input, type): if type == 'base64': base64String = re.sub('^data:image/.+;base64,', '', input).decode('base64') image = Image.open(cStringIO.StringIO(image_data)) self.__image = image self.__backupImage = deepcopy(self.__image) return else: raise ValueError('Cutter: This type is not supported')
transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) objectDetectorTrans = transforms.Compose([transforms.ToTensor()]) t0 = time.time() with torch.no_grad(): for i in range(len(filelist)): print("current file: ", filelist[i]) #Alle filer follow the pattern resolution_className_index. We extract these using split splits = filelist[i].split("_") #the object detector needs the entire lowRes picture. We load that in as tensor #of shape (1,3,W,H) imagePIL = Image.open(os.path.join(valPath, filelist[i])) image = objectDetectorTrans(imagePIL) image_z = torch.zeros(1, 3, image.shape[1], image.shape[2]) image_z[0] = image image_z = image_z.to(device) #We make inference. Ignore everything other than "boxes" detections = objectDetector(image_z)[0]["boxes"] print("Box points: ", detections) t1 = time.time() print(t1 - t0, " sec") t0 = t1 #looping through all suggested boxes for detection in detections: #we need the box points in the highRes picture. For that we need
matching.append(image_similarity(src)) for i in range(batch_size): src1 = ori_imgs[i].mul_(255).add_(0.5).clamp_( 0, 255).cpu().numpy().transpose((0, 2, 3, 1)) src2 = new_imgs[i].mul_(255).add_(0.5).clamp_( 0, 255).cpu().numpy().transpose((0, 2, 3, 1)) ori_imgs[i] = ori_imgs[i] new_imgsp[i] = ori_imgs[i] ori_index, ori_max = img_match(ori_imgs, matching) new_index, new_max = img_match(new_imgs, matching) for i in range(batch_size): ori_result = img_joint(ori_imgs[i], mtimage.open(imgs_list[ori_index[i]])) new_result = img_joint(new_imgs[i], mtimage.open(imgs_list[new_index[i]])) ori_result = Image.fromarray((ori_result * 255).astype(np.uint8)) new_result = Image.fromarray((new_result * 255).astype(np.uint8)) ori_result.save( os.path.join(test_path, 'ori_img' + str(ori_max) + '.jpg')) new_result.save( os.path.join(test_path, 'new_img' + str(new_max) + '.jpg')) # # dataroot = '/home/admin11/Data_test/celeba' # dataroot = '/home/admin11/Data_test/test_1000' # # test_path = '/home/admin11/1.my_zone/test_imgs' # test_path = '/home/admin11/1.my_zone/test_imgs'