예제 #1
0
파일: plotter.py 프로젝트: OliStein/minions
 def shist(self,data,sflag,spath,sname,pflag):
     g.tprinter('Running sist',pflag)
     xdata=data[:,0]
     ydata=data[:,1]
     plt.plot(xdata,ydata,'ro')
     plt.savefig(os.path.join(spath,str(sname))+'.pdf')
     plt.close()
예제 #2
0
def plot2D(x,y,x_ex,y_ex,ylabl):

    #static variable counter
    plot2D.fig_num += 1

    plt.subplot(2,2,plot2D.fig_num)
    plt.xlabel('$x$ (cm)')
    plt.ylabel(ylabl)
    plt.plot(x,y,"b+-",label="Lagrangian")
    plt.plot(x_ex,y_ex,"r--",label="Exact")
    plt.savefig("var_"+str(plot2D.fig_num)+".pdf")
예제 #3
0
 def plot(self, output):
     plt.figure(figsize=output.fsize, dpi=output.dpi)
     for ii in range(0, len(self.v)):
         imsize = [self.t[0], self.t[-1], self.x[ii][-1], self.x[ii][0]]
         lim = amax(absolute(self.v[ii])) / output.scale_sat
         plt.imshow(self.v[ii], extent=imsize, vmin=-lim, vmax=lim, cmap=cm.gray, origin='upper', aspect='auto')
         plt.title("%s-Velocity for Trace #%i" % (self.comp.upper(), ii))
         plt.xlabel('Time (s)')
         plt.ylabel('Offset (km)')
         #plt.colorbar()
         plt.savefig("Trace_%i_v%s.pdf" % (ii, self.comp))
         plt.clf()
예제 #4
0
def viz_losses(filename, losses):
  if '.' not in filename: filename += '.png'

  x = history['epoch']
  legend = losses.keys

  for v in losses.values: plt.plot(np.arange(len(v)) + 1, v, marker='.')

  plt.title('Loss over epochs')
  plt.xlabel('Epochs')
  plt.xticks(history['epoch'], history['epoch'])
  plt.legend(legend, loc = 'upper right')
  plt.savefig(filename)
예제 #5
0
파일: hw1_1.py 프로젝트: ajkur/Bayes_Class
def plot_hist(a,b):
    v = np.random.beta(a, b, 10000)
    s = np.zeros(v.shape[0])

    for i in range(v.shape[0]):
        s[i] = np.random.binomial(20,v[i])

    figure()

    center = scipy.stats.itemfreq(s)[:,0]
    hist = scipy.stats.itemfreq(s)[:,1]
    plt.bar(center, hist, align = 'center', width = 0.7)
    plt.savefig('../Figures/a'+str(a)+'_b'+str(int(b))+'.pdf')
예제 #6
0
def plot2D(x,y,ylabl,x_ex=None,y_ex=None):

    #static variable counter
    plot2D.fig_num += 1

    plt.subplot(2,2,plot2D.fig_num)
    plt.xlabel('$x$ (cm)')
    plt.ylabel(ylabl)
    plt.plot(x,y,"b+-",label="Numerical")
    if (x_ex != None):
        plt.plot(x_ex,y_ex,"r-x",label="Exact")

    plt.savefig("var_"+str(plot2D.fig_num)+".pdf")
def plot_confusion_matrix(cm, labels, title='Confusion matrix', cmap=plt.cm.Blues, save=False):
    plt.figure()
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(labels))
    plt.xticks(tick_marks, labels, rotation=45)
    plt.yticks(tick_marks, labels)
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.show()
    if save:
        plt.savefig(save)
예제 #8
0
def print_scatter_data():
	import matplotlib.pylab as plt
	filename = Par.dirname + ('/Scatter.dat')
	fitnesses = []
	self_reliences = []
	life_times = []
	self_reliences_dead = []

	for Agent in Par.Agents:
		if Agent.dead != True:
			fitnesses.append(Agent.fitness)
			Needs = Agent.needs
			Production = Agent.production
			selfReli = [0.0]*Par.num_resources
			for i in range(Par.num_resources):
				selfReli[i] = Production[i]*Needs[i]
			self_reliences.append(abs(sum(selfReli)))
		else:
			life_time = Agent.t_death - Agent.t_discovery 
			life_times.append(life_time)
			Needs = Agent.needs
			Production = Agent.production
			selfReli = [0.0]*Par.num_resources
			for i in range(Par.num_resources):
				selfReli[i] = Production[i]*Needs[i]
			self_reliences_dead.append(abs(sum(selfReli)))
			
	
	file =open(filename, 'w')

	for i in range(len(fitnesses)):
		s= str(fitnesses[i]) +'		'+ str(self_reliences[i])
		file.write(s)
		file.write('\n')
	file.close()	


	plt.scatter(self_reliences, fitnesses)
	plt.ylabel('Fitness')
	plt.xlabel('self_reliences')
	plt.savefig('FitnessVSR.png')
	plt.close()
	plt.scatter(self_reliences_dead, life_times)
	plt.ylabel('LifeTimes')
	plt.xlabel('self_reliences')
	plt.savefig('LifeTimeVSR.png')
	plt.close()
예제 #9
0
파일: KaZimm4.py 프로젝트: kedmond/KaZimm
def dataSet(temps, motorFreqs, durations=10.0, numMeas=10, pauseTime=1, sampRates=2048, tempTime=120, motorTime=60, printDataBool=False, plotResults = True, substance='Water' ):
    initialize(substance)                               #Initialize ports, files, and constants (see below) 
    
    for temp in temps:
        stirFreq = 400.0                                    #Set stirring speed for bath
        setBath(temp, stirFreq, minStableTime=tempTime)     #Set temperature and wait for stability (see below)
        
        for i in range(motorFreqs.size):                        #Cycle through motorFreqs
            motorFreq = motorFreqs[i]
            print 'motorFreq is ' + str(motorFreq) + ' deg/sec.'
            
            sampRate = sampRates[i]
            print 'sampRate is ' + str(sampRate) + ' samples/sec.'
            
            duration = durations[i]
            # before each measurement, we reset the chains by stirring them up, and then letting them reform

            print 'Spinning rotor for ' + str(motorTime) + ' seconds.'             
            setMotorFreq(stirFreq, sleepTime=motorTime)    # Prevent sedimentation
            
            print 'Pausing rotor for ' + str(pauseTime) + ' seconds.'             
            setMotorFreq(0, sleepTime=pauseTime)    # Pause, perhaps to wait for chains to form 
            
            breakBool = setMotorFreq(motorFreq, sleepTime=motorTime)
            #Set motor and checks if motorFreq is too high
            #(high value may be changed in method setMotorFreq) (see below)
            if breakBool: break                     #Break if motorFreq is above threshold
            
            rotorFreqs = getData(numMeas, countTime=duration, sampRate=sampRate, printDataBool=printDataBool)
            #Data retrieval (see below)
            
            plt.savefig('Figs/'+time.strftime("%y-%m-%d-%H-%M-%S", time.localtime())+'-'+str(motorFreq)+'.png')
            data = processData(temp, motorFreq, rotorFreqs) #Data processing (see below)
            
            # calculate the std. error:
            #se = numpy.std(rotorFreqs) / sqrt(numpy.size(rotorFreqs))
            
            # Data recording: temp. - motorFreq. - avg. rotor Freq. - std. err. - sampRate - duration
            writeToFile( data )
            
        print 'Measurements at ' + str(temp) + ' degrees C completed.'
        
    closeUp()
    
    if plotResults and len(data) > 1:
        kplt.plotData(os.getcwd(), Filename, writeFile=True, fit=False)
예제 #10
0
def plot_data():
	import matplotlib.pylab as plt
	t, suffering = np.loadtxt('suffering.dat', unpack= True, usecols = (0,1))
	t, fitness = np.loadtxt('fitness.dat', unpack = True, usecols = (0,1))


	plt.plot(t, suffering)
	plt.xlabel('t')
	plt.ylabel('suffering')
	plt.savefig('suffering.png')
	plt.close()

	plt.plot(t, fitness)
	plt.xlabel('t')
	plt.ylabel('fitness')
	plt.savefig('fitness.png')
	plt.close()
예제 #11
0
def Transit(lc, PGpoints, intrans, starpos):
    #Takes in shape. Draws it as array. Moves it across the Star. Draws lightcurve. Compares with known ligthcurve
    movie=0
    #Drawing star
    star = DrawStar(starpos)
    #Normalising total flux to 1.0
    star/=np.sum(star)
    #Turning the polygon into an array
    from PIL import Image, ImageDraw
    img = Image.new('L', (800, 800), 0)
    ImageDraw.Draw(img).polygon(PGpoints, outline=1, fill=1)
    objbox=np.array(img)
    objbox=1-objbox
    #Setting animation to step 4 pixels at a time
    step=4.0
    lc=lc[lc[:, 0].argsort(), :]
    timearr=np.linspace(lc[0,0],lc[-1,0],1600)
    print timearr
    print lc[:, 0]
    lightcurvemodel=[]
    #Drawing initial plots
    fig=plt.figure(figsize=(6,  12))
    ax1=fig.add_subplot(211)
    ax1.imshow(star[:, :800],cmap='hot');
    ax2=fig.add_subplot(212)
    ax2.plot(lc[:,0],lc[:,1],'--k')
    ax2.plot(timearr, np.tile(1.0, 1600),'--', color='#CCCCCC')
    plt.pause(0.002)
    #Sweep across the star, keeping the object fixed
    for pix in range(400,2000, step):
        #Draw an 800x800 box from the star
        starbox=star[:,(pix-400):(pix+400)]
        total=objbox*starbox
        #if np.sum(starbox)!=0:#skipping to where there is some of the star on the screen
        ax1.cla()
        ax1.imshow(total,cmap='hot');
        #plotting lightcurve
        rest=np.sum(star[:,:(pix-400)])+np.sum(star[:, (pix+400):])
        lightcurvemodel+=[np.sum(total)+np.sum(rest)]
        ax2.plot(timearr[pix-400],np.array(lightcurvemodel)[-1],'.r')
        plt.pause(0.002)
        movie=1 #Setting to record pngs as movie
        if movie==1:
            plt.savefig('TransitMovie/Movie'+str(pix)+'.png')
    plt.pause(1)
    np.savetxt('OutLightcurve.txt',np.column_stack((timearr[0:len(lightcurvemodel)],np.array(lightcurvemodel))))
예제 #12
0
 def __save(self,n,plot,sfile):
     p.figure(figsize=sfile)
     p.xlabel(plot.xlabel)
     p.ylabel(plot.ylabel)
     p.xscale(plot.xscale)
     p.yscale(plot.yscale)
     p.grid()
     for curve in plot.curves: 
         if curve[1] == None: p.plot(curve[0],curve[2], label=curve[3])
         else: p.plot(curve[0],  curve[1], curve[2], label=curve[3])
     p.rc('legend', fontsize='small')
     p.legend(shadow=0, loc='best')
     p.axes().set_aspect(plot.aspect)
     if not plot.dir: plot.dir = './plots/'
     if not plot.name: plot.name = self.__global_name+'_%0*i'%(2,n)
     if not os.path.isdir(plot.dir): os.mkdir(plot.dir)
     if plot.pgf: p.savefig(plot.dir+plot.name+'.pgf')
     else: p.savefig(plot.dir+plot.name+'.pdf', bbox_inches='tight')
     p.close()
예제 #13
0
def task4(save=False):
    knot = [0, 0, 0, 0.3, 0.5, 0.5, 0.6, 1, 1, 1]
    control = np.array([[0, 0], [2, 3], [7, 5], [9, 2], [13, 1], [10, 1],
                        [7, 1]])

    A = spline(knot, 2)

    for i in range(len(knot) - 1):
        X = linspace(knot[i], knot[i + 1], 20)
        Y = A.evalvector(control, X)
        plt.plot(Y[:, 0], Y[:, 1])
        plt.scatter(control[:, 0], control[:, 1])
    plt.scatter(6, 3, s=300)
    plt.scatter(6.1, 3, s=50, color="black")
    plt.plot((7, 6), (1, 0))
    plt.grid()
    if save:
        plt.savefig("interpol2.pdf")

    plt.show()
def plot_top_M_fisherfaces(eigenvec,M,Mpca,mode):
	if mode == 'None':
		return None
	cols = 10
	rows = M/cols
	index = 1
	font_size = 10
	plt.figure(figsize=(20,20))
	for i in range(0,M):
		plt.subplot(rows,cols,index),plt.imshow(np.reshape(eigenvec[:,i],(46,56)).T, cmap = 'gist_gray')
		face_title = str("M="+str(i+1))
		plt.title(face_title, fontsize=font_size).set_position([0.5,1.05]), plt.xticks([]), plt.yticks([])	# set_position([a,b]) adjust b for height
		index = index+1
	if mode == 'show':
		plt.show()
		plt.close()
	if mode == 'save':
		title = str("Top 50 Fisherfaces for Mpca="+str(Mpca))
		plt.savefig(title)
		plt.close()
예제 #15
0
def print_save_all_mean_faces(x_class_mean,global_mean,show,save):
	rows = 4
	cols = 14
	index = 1
	font_size = 10
	plt.figure(figsize=(20,10))
	plt.subplot(rows,cols,index), plt.imshow(np.reshape(global_mean,(46,56)).T, cmap = 'gist_gray')
	title = str("Global Mean")
	plt.title(title, fontsize=font_size).set_position([0.5,0.95]), plt.xticks([]), plt.yticks([])
	index=index+1
	for i in range(0,x_class_mean.shape[1]):
		title = str("Class Mean "+str(i+1))
		plt.subplot(rows,cols,index), plt.imshow(np.reshape(x_class_mean[:,i],(46,56)).T, cmap = 'gist_gray')
		plt.title(title, fontsize=font_size).set_position([0.5,0.95]), plt.xticks([]), plt.yticks([])
		index = index+1
	if show == 'yes':
		plt.show()
	if save == 'yes':
		plt.savefig('Global and Class Mean')
	plt.close()
예제 #16
0
def plot_confusion_matrix(cm, classes,
    normalize=False, title='Confusion matrix',
    cmap=plt.cm.Blues, filename='viz\\confusion_matrix.png'):
  plt.figure()
  plt.imshow(cm, interpolation='nearest', cmap=cmap)
  plt.title(title)
  plt.colorbar()
  tick_marks = np.arange(len(classes))
  plt.xticks(tick_marks, classes, rotation=45)
  plt.yticks(tick_marks, classes)

  if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

  thresh = cm.max() / 2.
  for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
      plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black")

  plt.tight_layout()
  plt.ylabel('True label')
  plt.xlabel('Predicted label')
  plt.savefig(filename)
예제 #17
0
def make_hists(self, X, y):
    colors = [
        'red', 'tan', 'lime', 'orange', 'black', 'yellow', 'green', 'pink',
        'red', 'brown', 'grey', 'purple', 'navy'
    ]
    features = (set(self.train_df.keys()) -
                {'Vote'}) - set(categorical_features)
    for feature in features:
        df = pd.DataFrame({
            "x": X[feature].values,
            "class": y.values.flatten()
        })

        _, edges = np.histogram(df["x"], bins=15)
        histdata = []
        labels = []
        for n, group in df.groupby("class"):
            histdata.append(np.histogram(group["x"], bins=edges)[0])
            labels.append(n)

        hist = np.array(histdata)
        histcum = np.cumsum(hist, axis=0)

        plt.bar(edges[:-1],
                hist[0, :],
                width=np.diff(edges)[0],
                label=labels[0],
                align="edge")

        for i in range(1, len(hist)):
            plt.bar(edges[:-1],
                    hist[i, :],
                    width=np.diff(edges)[0],
                    bottom=histcum[i - 1, :],
                    color=colors[i],
                    label=labels[i],
                    align="edge")

        plt.legend(title="class")
        plt.savefig('hists_label/' + feature + '.jpeg')
def cmp_overall_qoe_per_region(regions, regionName):
    google_QoE_folder = geographical_data_folder + "google/dataQoE/"
    azure_QoE_folder = geographical_data_folder + "azure/dataQoE/"
    amazon_QoE_folder = geographical_data_folder + "amazon/dataQoE/"

    qoogle_regional_qoes = load_all_session_qoes_per_region(google_QoE_folder)
    azure_regional_qoes = load_all_session_qoes_per_region(azure_QoE_folder)
    amazon_regional_qoes = load_all_session_qoes_per_region(amazon_QoE_folder)

    google_to_draw = []
    azure_to_draw = []
    amazon_to_draw = []
    for r in regions:
        google_to_draw.extend(qoogle_regional_qoes[r])
        azure_to_draw.extend(azure_regional_qoes[r])
        amazon_to_draw.extend(amazon_regional_qoes[r])

    fig, ax = plt.subplots()

    draw_cdf(google_to_draw, styles[0], "Google Cloud CDN")
    draw_cdf(azure_to_draw, styles[1], "Azure CDN (Verizon)")
    draw_cdf(amazon_to_draw, styles[2], "Amazon CloudFront")

    ax.set_xlabel(r'Session QoE (0-5)', fontsize=18)
    ax.set_ylabel(r'Percentage of PlanetLab users', fontsize=18)
    plt.xlim([0, 5])
    plt.ylim([0, 1])
    plt.legend(loc=2)

    imgName = img_folder + "compare_cloud_cdns_QoE_region_" + regionName
    plt.savefig(imgName + ".jpg")
    plt.savefig(imgName + ".pdf")
    plt.savefig(imgName + ".png")
    plt.show()
예제 #19
0
    def rader_plot(x, y):
        pi = 3.1415
        
        # number of variable
        plt.figure(figsize=(8,8))

        categories=x.values.tolist()
        N = len(categories)

        # We are going to plot the first line of the data frame.
        # But we need to repeat the first value to close the circular graph:
        values = [s for s in y.values.tolist()]

        # What will be the angle of each axis in the plot? (we divide the plot / number of variable)
        angles = [n / float(N) * 2 * pi for n in range(N)]


        # Initialise the spider plot
        ax = plt.subplot(111, polar=True)

        # Draw one axe per variable + add labels labels yet
        plt.xticks(angles, categories, color='grey', size=25)

        # Draw ylabels
        ax.set_rlabel_position(0)
        plt.yticks([0.25, 0.5, 0.75, 1], ["25%","50%","75%","100%"], color="grey", size=7)
        plt.ylim(0,1)
        
        angles.append(angles[0])
        values.append(values[0])

        # Plot data
        ax.plot(angles, values, linewidth=1, linestyle='solid')

        # Fill area
        ax.fill(angles, values, 'b', alpha=0.1)
        filename = f"{uid}_{status_id}.png"
        plt.savefig(filename)
        plt.close()
        return filename
예제 #20
0
def main():

    df = pd.read_csv(sys.argv[1])
    df_fraud = df.loc[df['Class'] == 1]
    # Only sample 50,000 data points
    df_gen = df.loc[df['Class'] == 0].head(50000)
    df_new = pd.concat([df_fraud, df_gen])
    # Drop uninformative features
    df_new = df_new.drop('Time', axis=1).drop("V13", axis=1).drop(
        "V15", axis=1).drop("V20", axis=1).drop("V22", axis=1).drop(
            "V23", axis=1).drop("V24",
                                axis=1).drop("V25",
                                             axis=1).drop("V26",
                                                          axis=1).drop("V28",
                                                                       axis=1)

    t0 = time()

    # Execute t-sne
    X_tsne = manifold.TSNE(learning_rate=500, n_iter=600,
                           verbose=4).fit_transform(
                               df_new.drop('Class', axis=1))

    plt.figure()
    plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=df_new['Class'])
    plt.xlabel("x-tsne")
    plt.ylabel("y-tsne")
    plt.title('T-SNE on Reduced Credit Card Fraud Detection Dataset')

    purple_patch = mpatches.Patch(color='purple', label='Genuine')
    yellow_patch = mpatches.Patch(color='yellow', label='Fraudulent')
    plt.legend(handles=[purple_patch, yellow_patch])

    t1 = time()

    plt.savefig('tsne_50kpoints_600iterations_partialfeature.png',
                bbox_inches='tight')

    print(t1 - t0)
    plt.show()
def cmp_overall_qoe_cps():
    google_QoE_folder = geographical_data_folder + "google/dataQoE/"
    azure_QoE_folder = geographical_data_folder + "azure/dataQoE/"
    amazon_QoE_folder = geographical_data_folder + "amazon/dataQoE/"

    qoogle_session_qoes = load_all_session_qoes(google_QoE_folder)
    azure_session_qoes = load_all_session_qoes(azure_QoE_folder)
    amazon_session_qoes = load_all_session_qoes(amazon_QoE_folder)

    fig, ax = plt.subplots()

    draw_cdf(qoogle_session_qoes, styles[0], "Google Cloud CDN")
    draw_cdf(azure_session_qoes, styles[1], "Azure CDN (Verizon)")
    draw_cdf(amazon_session_qoes, styles[2], "Amazon CloudFront")

    ax.set_xlabel(r'Session QoE (0-5)', fontsize=18)
    ax.set_ylabel(r'Percentage of PlanetLab users', fontsize=18)
    plt.xlim([0, 5])
    plt.ylim([0, 1])
    plt.legend(loc=2)

    imgName = img_folder + "compare_cloud_cdns_QoE_overall"
    plt.savefig(imgName + ".jpg")
    plt.savefig(imgName + ".pdf")
    plt.savefig(imgName + ".png")
    plt.show()
def plot_df(
    df1, plot_title, x_axis, y_axis, plot, save
):  # function for plotting high-dimension and low-dimension eigenvalues
    y1 = df1[df1.columns[1]]
    x1 = df1[df1.columns[0]]
    plt.figure(figsize=(8, 8))
    plt.plot(x1, y1, color='red')
    plt.grid(color='black', linestyle='-',
             linewidth=0.1)  # parameters for plot grid
    plt.xticks(np.arange(0,
                         max(x1) * 1.1,
                         int(max(x1) / 10)))  # adjusting the intervals to 250
    plt.yticks(np.arange(0, max(y1) * 1.1, int(max(y1) / 10)))
    plt.title(plot_title).set_position([0.5, 1.05])
    plt.xlabel(x_axis)
    plt.ylabel(y_axis)
    plt.legend(loc='best')  # creating legend and placing in at the top right
    if save == 'yes':
        plt.savefig(plot_title)
    if plot == 'yes':
        plt.show()
    plt.close()
예제 #23
0
파일: tools.py 프로젝트: sibofeng/PILAE
def draw_3D(csvfile, savename, x_name, y_name, z_name1, z_name2):
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    import pandas as pd
    from scipy.interpolate import griddata
    csv = pd.read_csv(csvfile)
    x = csv[x_name]
    y = csv[y_name]
    z1 = csv[z_name1]
    z2 = csv[z_name2]
    # xx, yy = np.meshgrid(x, y)
    # zz = griddata(x, y, z, xx, yy)
    ax = plt.subplot(111, projection='3d')
    ax.scatter(x, y, z1)
    ax.scatter(x, y, z2)
    # ax.plot_trisurf(x, y, z)
    ax.set_xlabel('k')
    ax.set_ylabel('alpha')
    ax.set_zlabel('acc')

    plt.savefig('../eps/' + savename)
    plt.show()
예제 #24
0
def ecdf_sca(data,
             attribute,
             aggregate=False,
             datalinks=range(0, NUM_DATA_LINK),
             save=False):
    if aggregate:
        selected_ds = data[data.name.isin([
            attribute + '-' + str(i) for i in datalinks
        ])].groupby('run').mean()
    else:
        selected_ds = data[data.name == attribute]

    plot_ecdf(selected_ds.value.to_numpy())
    plt.title("ECDF for " + attribute +
              (" (aggregated mean)" if aggregate else ""))

    if save:
        plt.savefig("ecdf_" + attribute + ".pdf", bbox_inches="tight")
        plt.clf()
    else:
        plt.show()
    return
예제 #25
0
파일: zad6.py 프로젝트: anahrgovic/PAF
def udaljenost_tocke(x1,y1,x2,y2,r):
    plt.xlim([0,10])
    plt.ylim([0,10])
    kruznica = plt.Circle((x2,y2),r,color='r')
    plt.gca().add_artist(kruznica)
    plt.plot(x1,y1, 'bo')
    x = (x1-x2)**2 + (y1-y2)**2
    d = sqrt(x)
    nacin = int(input('Unesi 1 za prikaz slike, 2 za spremanje'))
    if znak ==1:
        plt.show()
    elif znak ==2:
        naziv = input('Unesite naziv slike:')
        plt.savefig(f'{naziv}.pdf')

    epsilon = 0.01
    if d < r:
        print(f'Točka je unutar kružnice, a udaljenost je {d}.')
    elif r-epsilon < d < r+epsilon:
        print(f'Točka se nalazi na kružnici.')
    else:
        print(f'Točka je izvan kružnice, a udaljenost je {d}.')
예제 #26
0
파일: tools.py 프로젝트: sibofeng/PILAE
def draw_line_chart12(
    csvfile,
    savename,
    x_name,
    y_name_1,
    y_name_2,
):
    import matplotlib.pyplot as plt
    import pandas as pd
    csv = pd.read_csv(csvfile)
    x = csv[x_name]
    y1 = csv[y_name_1]
    y2 = csv[y_name_2]
    plt.figure()
    plt.plot(x, y1, marker='o')
    plt.plot(x, y2, marker='^')
    plt.xlabel('number of maps')
    plt.ylabel('accuracy')
    plt.grid()
    plt.legend()
    plt.savefig('../eps/' + savename)
    plt.show()
예제 #27
0
    def display(self, data, candidates, fname, display):
        
        finallist=[]
        for c in candidates:
            finallist.append(c[0])
        #print finallist
        part1 = finallist[:len(finallist)/2]
        part2 = finallist[len(finallist)/2:]
        
        meandiff=int(np.sqrt(np.power(np.mean(part2),2)-np.power(np.mean(part1),2)))
        rangeA = max(part1)-min(part1)
        rangeB = max(part2)-min(part2)
        span = int((rangeA+rangeB)/2)
        dspan = int(meandiff/span)
        theta = float(meandiff/(rangeA+rangeB))
        oneortwo=""
        if dspan >3 and meandiff > 20 or meandiff>36:
            oneortwo = "Two distributions \n\n MD: %d \n Span: %d \n Dspan: %d \n theta: %d" % (meandiff, span, dspan, theta) 
        else:
            oneortwo = "One distribution \n\n MD: %d \n Span: %d \n Dspan: %d \n theta: %d" % (meandiff, span, dspan, theta)

        cans = np.array(candidates)
        plt.plot(cans[:,0],cans[:,1],'ro')
        plt.axhline(max(cans[:,1])/4, color='r')
        plt.axhline(max(cans[:,1]/2), color='r')
        plt.axhline(int(max(cans[:,1]))*0.75, color='r')
        red_patch = mpatches.Patch(color='red', label='75%, 50% and 25% \nof maximum frequency')
        plt.legend(handles=[red_patch])
        plt.ylabel('Frequency of occurence')
        plt.xlabel('separate items')
        plt.title('Frequency distribution estimation graph: %s' %(fname))
        plt.text(max(data)*1.1, max(cans[:,1])*0.62, oneortwo, fontsize = 11, color = 'r')
        plt.hist(data,range(int(min(data)),int(max(data)),1))
        ofile = fname[0:-3]+"png"
        print ("Writing outfile: %s") % (ofile)
        plt.savefig(ofile, bbox_inches='tight')
        if display == True: 
            plt.show()
        return;
예제 #28
0
    def plot_board(self):
        X = self.X
        fig = plt.figure(figsize=(5, 5))
        plt.xlim(-1, 1)
        plt.ylim(-1, 1)

        if self.mu and self.clusters:
            mu = self.mu
            clus = self.clusters
            K = self.K

            for m, clu in clus.items():
                cs = cm.spectral(1. * m / self.K)
                plt.plot(mu[m][0],
                         mu[m][1],
                         'o',
                         marker='*',
                         markersize=12,
                         color=cs)
                plt.plot(zip(*clus[m])[0],
                         zip(*clus[m])[1],
                         '.',
                         markersize=8,
                         color=cs,
                         alpha=0.5)

        else:
            plt.plot(zip(*X)[0], zip(*X)[1], '.', alpha=0.5)

        if self.method == '++':
            tit = 'K-means++'
        else:
            tit = 'K-means with random initialization'

        pars = 'N=%s, K=%s' % (str(self.N), str(self.K))
        plt.title('\n'.join([pars, tit]), fontsize=16)
        plt.savefig('kpp_N%s_K%s.png' % (str(self.N), str(self.K)),
                    bbox_inches='tight',
                    dpi=200)
예제 #29
0
파일: Dyan2D.py 프로젝트: ArmandCom/DYAN
    def forward(self, x):
        # polar plot
        rr = self.rr.data.cpu().detach().numpy()
        theta = self.theta.data.cpu().detach().numpy()
        ax = plt.subplot(1, 1, 1, projection='polar')
        ax.scatter(0, 1, c='black')
        # unactive poles
        ax.scatter(theta, rr)
        ax.scatter(-theta, rr)
        ax.scatter(np.pi - theta, rr)
        ax.scatter(theta - np.pi, rr)
        #
        ax.set_rmax(1.2)
        ax.set_title("Dictionary", va='bottom')
        plt.savefig('usedPolesDCT_NFRAMES.png')
        plt.show()
        plt.close()

        dic = creatRealDictionary(self.T, self.rr, self.theta, self.gid)
        sparsecode = fista(dic, x, 0.05, 100, self.gid)

        return Variable(sparsecode)
예제 #30
0
def plot_scores(scores):
    plt.figure(figsize=(15, 6))
    names, val_scores = [name for name, _, _, _, _, _, _ in scores
                         ], [score for _, score, _, _, _, _, _ in scores]
    ax = sns.barplot(x=names, y=val_scores)

    for p, score in zip(ax.patches, val_scores):
        height = p.get_height()
        ax.text(p.get_x() + p.get_width() / 2.,
                height + 0.005,
                '{:1.3f}'.format(score),
                ha="center",
                fontsize=14)

    plt.xlabel('method', fontsize=18)
    plt.ylabel('Mean Val. Accuracy', fontsize=18)
    plt.xticks(rotation=90, fontsize=16)
    plt.yticks(fontsize=16)
    plt.ylim(0.6, 1)
    path = WORKING_PATH + "/___comparison.png"
    plt.savefig(path)
    plt.clf()
    return path
예제 #31
0
파일: CNN.py 프로젝트: yanghoJI/Deepstudy
def plotdata(trl, tel, tea):
    xlist = range(len(trl))
    ax1 = plt.subplot(2, 1, 1)
    plt.plot(xlist, trl, 'r-', label='train loss')
    plt.plot(xlist, tel, 'b-', label='validation loss')
    plt.ylabel('loss value')
    plt.title('loss graph')
    plt.legend(loc=1)

    ax2 = plt.subplot(2, 1, 2)
    plt.plot(xlist, tea, 'b-', label='validation acc')
    #plt.ylim(0, 100)
    #plt.xlim(0, 100)
    plt.yticks(range(0, 101, 10))
    plt.grid(True)
    plt.ylabel('acc(%)')
    plt.title('acc graph')
    plt.legend(loc=1)

    plt.tight_layout()

    plt.savefig('batchNorWithxavier.png', dpi=300)
    plt.close()
예제 #32
0
파일: tools.py 프로젝트: sibofeng/PILAE
def draw_line_chart14(csvfile, savename, x_name, y_name1, y_name2):
    import matplotlib.pyplot as plt
    import pandas as pd
    csv = pd.read_csv(csvfile)
    x = csv[x_name]
    y1 = csv[y_name1]
    y2 = csv[y_name2]
    csv2 = pd.read_csv("../log/mnist_mapid_acc10.csv")
    y3 = csv2[y_name1]
    y4 = csv2[y_name2]

    plt.figure()
    plt.plot(x, y1, marker=".")
    plt.plot(x, y2, marker=".")
    plt.plot(x, y3, marker=".")
    plt.plot(x, y4, marker='.')

    plt.xlabel('number of maps')
    plt.ylabel('accuracy')
    plt.grid()
    plt.legend()
    plt.savefig('../eps/' + savename)
    plt.show()
예제 #33
0
def plot3d(data):
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    Z, T1, T2, T3, X, Y = zip(*data)
    X = np.array(X)
    Y = np.array(Y)
    Z = np.array(Z)
    print X, Y, Z
    print "XYZ printed"
    print X.shape
    print Y.shape
    print Z.shape
    ax.plot_surface(X, Y, Z) #,rstride=8, cstride=8, alpha=0.3)
    #cset = ax.contour(X, Y, Z, zdir='z', offset=-100)
    #cset = ax.contour(X, Y, Z, zdir='x', offset=-40)
    #cset = ax.contour(X, Y, Z, zdir='y', offset=40)
    ax.set_xlabel('Latitude')
    #ax.set_xlim3d(-40, 40)
    ax.set_ylabel('Longitude')
    #ax.set_ylim3d(-40, 40)
    ax.set_zlabel('Time')
    #ax.set_zlim3d(-100, 100)
    plt.savefig("fig1.ps")
예제 #34
0
파일: plot.py 프로젝트: Caowenpeng/Shell
def cm_plot(original_label, predict_label, kunm, pic=None):
    cm = confusion_matrix(original_label, predict_label)
    print('kappa:', kappa(cm))
    plt.figure()
    plt.matshow(cm, cmap=plt.cm.Blues)
    plt.colorbar()
    for x in range(len(cm)):
        for y in range(len(cm)):
            plt.annotate(cm[x, y],
                         xy=(x, y),
                         horizontalalignment='center',
                         verticalalignment='center')

    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.title('confusion matrix')

    if pic is not None:
        plt.savefig(str(pic) + '.svg')
    # plt.xticks(('Wake','N1','N2','N3','REM'))
    # plt.yticks(('Wake','N1','N2','N3','REM'))
    plt.savefig(savepath + "cnnmatrix" + str(kunm) + ".svg")
    plt.show()
예제 #35
0
def plotFeatImportance(pathOut,
                       imp,
                       oob,
                       oos,
                       method,
                       tag=0,
                       simNum=0,
                       **kargs):
    #plot mean imp bars with std
    import matplotlib as mpl
    mpl.figure(figsize=(10, imp.shape[0] / 5.))
    imp = imp.sort_values('mean', ascending=True)
    ax = imp['mean'].plot(kind='barh',
                          color='b',
                          alpha=.25,
                          xerr=imp['std'],
                          error_kw={'ecolor': 'r'})
    if method == 'MDI':
        mpl.xlim([0, imp.sum(axis=1).max()])
        mpl.axvline(1. / imp.shape[0],
                    linewidth=1,
                    color='r',
                    linestyle='dotted')
    ax.get_yaxis().set_visible(False)
    for i, j in zip(ax.patches, imp.index):
        ax.text(i.get_width() / 2,
                i.get_y() + i.get_height() / 2,
                j,
                ha='center',
                va='center',
                color='black')
    mpl.title = ('tag=' + tag + '|simNum=' + str(simNum) + '|oob=' +
                 str(round(oob, 4)) + '|oos=' + str(round(oos, 4)))
    mpl.savefig(pathOut + 'featImportance_' + str(simNum) + '.png', dpi=100)
    mpl.clf()
    mpl.close()
    return
예제 #36
0
def plot_response_time_variousT():
    dataframe = pd.DataFrame()
    index = []

    for k in capacity_change_time:
        for mode in modes:
            index.append(f"{mode},t={k}s")

    dataframe['index'] = index

    for mode in modes:

        index = []
        meanResponseTime = []

        for i in capacity_change_time:
            df = scalar_df_parse(
                f"C:\\Users\\Leonardo Poggiani\\Documents\\GitHub\\PECSNproject\\csv\\pool_classico_varia_T\\{mode}{i}.csv"
            )
            response = df[df.name == "responseTime"]
            meanResponseTime.append(response.value.mean())
            index.append(i)

        plt.bar(index, meanResponseTime)
        plt.title(f"{mode}")
        plt.rcParams["figure.figsize"] = (12, 10)
        plt.xticks(rotation=25)
        plt.show()

    plt.xlabel("Value of t")
    plt.ylabel("Response time")
    plt.title("Comparison of various values of t")
    plt.legend(loc='best')
    plt.savefig(
        "C:\\Users\\Leonardo Poggiani\\Documents\\GitHub\\PECSNproject\\analysis\\variandoT\\responseTimeAlVariareDiT2.png"
    )
예제 #37
0
def plot_per_historgram(per_path:str, save_path:str=None):
    """
    This function plots PER values as a histogram. The plot is saved to `save_path`.
    Args:
        per_path (str): path to per csv file with one column as the sample_id and the other the per value
        save_path (str): path to save the histrogram plot
    """
    import csv
    import matplotlib.pyplot as plt
    import numpy as np

    with open(per_path, 'r') as fid:
        reader = csv.reader(fid, delimiter=',')
        per_list = [float(row[1]) for row in reader]

    plt.hist(per_list, bins=10, range=(0.0, 1.0))
    plt.title("histogram of 2020-10-29 model PER values")
    plt.xlabel("PER bins")
    plt.ylabel("# of records")
    plt.xticks(np.arange(0, 1.1, step=0.1))
    #plt.yticks(labels=per_list)
    if save_path == None:
        save_path = "PER_histogram.png" 
    plt.savefig(save_path)
예제 #38
0
 def loss_store2(self, x_train, x_gene):
     with open('./result/genefinalfig/x_train.pickle', 'wb') as fp:
         pickle.dump(x_train, fp)
     with open('./result/genefinalfig/generated.pickle', 'wb') as fp:
         pickle.dump(x_gene, fp)
     bins = 100
     plt.hist(x_gene, bins, facecolor='red', alpha=0.5)
     plt.title('Histogram of distribution of generated data')
     plt.xlabel('Generated data value')
     plt.ylabel('Frequency')
     plt.savefig(
         './result/genefinalfig/WGAN-Generated-data-distribution.jpg')
     plt.close()
     with open('./result/lossfig/wdis.pickle', 'wb') as fp:
         pickle.dump(self.wdis_store, fp)
     t = arange(len(self.wdis_store))
     plt.plot(t, self.wdis_store, 'r--')
     plt.xlabel('Iterations')
     plt.ylabel('Wasserstein distance')
     plt.savefig('./result/lossfig/WGAN-W-distance.jpg')
     plt.close()
     rv_pre, gv_pre, rv_pro, gv_pro = dwp(x_train, x_gene, self.testX,
                                          self.db)
     print 'Totally ' + str(len(rv_pre)) + ' of coordinates are left'
     with open('./result/genefinalfig/rv_pre.pickle', 'wb') as fp:
         pickle.dump(rv_pre, fp)
     with open('./result/genefinalfig/gv_pre.pickle', 'wb') as fp:
         pickle.dump(gv_pre, fp)
     with open('./result/genefinalfig/rv_pro.pickle', 'wb') as fp:
         pickle.dump(rv_pro, fp)
     with open('./result/genefinalfig/gv_pro.pickle', 'wb') as fp:
         pickle.dump(gv_pro, fp)
     rv_pre, gv_pre, rv_pro, gv_pro = fig_add_noise(rv_pre), fig_add_noise(
         gv_pre), fig_add_noise(rv_pro), fig_add_noise(gv_pro)
     plt.scatter(rv_pre, gv_pre)
     plt.title('Dimension-wise prediction, lr')
     plt.xlabel('Real data')
     plt.ylabel('Generated data')
     plt.savefig('./result/genefinalfig/WGAN-dim-wise-prediction.jpg')
     plt.close()
     plt.scatter(rv_pro, gv_pro)
     plt.title('Dimension-wise probability, lr')
     plt.xlabel('Real data')
     plt.ylabel('Generated data')
     plt.savefig('./result/genefinalfig/WGAN-dim-wise-probability.jpg')
     plt.close()
def img_gen(img,
            zca=False,
            rotation=0.,
            w_shift=0.,
            h_shift=0.,
            shear=0.,
            zoom=0.,
            h_flip=False,
            v_flip=False,
            preprocess_fcn=None,
            batch_size=9):
    """
    define function to generate images
    """
    datagen = ImageDataGenerator(zca_whitening=zca,
                                 rotation_range=rotation,
                                 width_shift_range=w_shift,
                                 height_shift_range=h_shift,
                                 shear_range=shear,
                                 zoom_range=zoom,
                                 fill_mode='nearest',
                                 horizontal_flip=h_flip,
                                 vertical_flip=v_flip,
                                 preprocessing_function=preprocess_fcn,
                                 data_format=K.image_data_format())
    datagen.fit(img)
    i = 0
    for img_batch in datagen.flow(img, batch_size=9, shuffle=False):
        for img in img_batch:
            plt.subplot(330 + 1 + i)
            plt.imshow(img)
            i += 1
        if i >= batch_size:
            break
        # plt.show()
        plt.savefig('img/trans/cats.png')
예제 #40
0
def show_hough_line(img, accumulator, thetas, rhos, save_path=None):
    '''
		set up show image with matplotlib

    '''
    fig, ax = plt.pyplot.subplots(1, 2, figsize=(10, 10))

    ax[0].imshow(img, cmap=plt.cm.gray)
    ax[0].set_title('Input image')
    ax[0].axis('image')

    ax[1].imshow(
        accumulator, cmap='jet',
        extent=[np.rad2deg(thetas[-1]), np.rad2deg(thetas[0]), rhos[-1], rhos[0]])
    ax[1].set_aspect('equal', adjustable='box')
    ax[1].set_title('Hough transform')
    ax[1].set_xlabel('Angles')
    ax[1].set_ylabel('Distance')
    ax[1].axis('image')

    # plt.axis('off')
    if save_path is not None:
        plt.savefig(save_path, bbox_inches='tight')
    plt.show()
예제 #41
0
def show_image(img_ndarray, id):
    '''
    Visualize images resulted from calling vis_smpl_params in Jupyternotebook
    :param img_ndarray: Nx400x400x3
    '''

    import matplotlib as plt
    import os
    import numpy as np
    import cv2

    fig = plt.figure(figsize=(4, 4), dpi=300)
    ax = fig.gca()

    img = img_ndarray.astype(np.uint8)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    ax.imshow(img)
    plt.axis('off')

    if not os.path.isdir("images"):
        os.makedirs("images")
    fig_name = "images/fig" + str(id) + ".png"
    plt.savefig(fig_name)
    plt.close()
예제 #42
0
파일: tools.py 프로젝트: sibofeng/PILAE
def draw_bar(savename):
    import matplotlib.pyplot as plt
    size = 3
    x = np.arange(size)
    a = [34.89, 33.87, 72.37]
    b = [551.72, 552.87, 698.34]
    xl = [
        'training time \n on MNIST', 'training time on \n Fashion-MNIST',
        'training time \n on CIFAR-10'
    ]
    total_width, n = 0.54, 2
    width = total_width / n
    x = x - (total_width - width)
    plt.figure()
    plt.bar(x, a, width=width)
    plt.bar(x + width, b, width=width)
    plt.ylabel('time(s)')
    plt.xticks(
        x,
        xl,
    )
    plt.legend()
    plt.savefig('../eps/' + savename)
    plt.show()
def plotdatatree(treeID, scale1, mass1):
	plot_title="Mass Accretion History Tree " + str(treeID)   #Can code the number in with treemax
	x_axis="scale time"
	y_axis="total mass"
	figure_name=os.path.expanduser('~/figureTree' + str(treeID))
	#Choose which type of plot you would like: Commented out.
	plt.plot(scale1, mass1, linestyle="-", marker="o")
	#plt.scatter(scale1, mass1, label="first tree")

	plt.title(plot_title)
	plt.xlabel(x_axis)
	plt.ylabel(y_axis)
	#plt.yscale("log")

	plt.savefig(figure_name)

	#In order to Plot only a single tree on a plot must clear lists before loop. 
	#Comment out to over plot curves.			
	plt.clf()

	clearmass = []
	clearscale = []

	return clearmass, clearscale
예제 #44
0
contour_font = 10

fig = plt.figure(figsize=(6, 5))
ax_ray = fig.add_subplot(111)
dist = [20, 60, 85, 95]
dist = [8, 27, 48, 67, 89, 99]
dist = [30, 60, 80, 95]

for i in range(len(dist)):

    s = str(str(dist[i]) + "_SURF96.out")
    data = np.loadtxt(s, usecols=(5, 6, 7))
    ax_ray.plot(data[:, 0], data[:, 1], label=str(dist[i] * 10) + "km")
ax_ray.grid(True, linestyle='--', color='black', linewidth=0.15)

plt.xticks(fontsize=axes_label_font_size)
plt.yticks(fontsize=axes_label_font_size)
plt.xlabel('Time period ($s$)',
           fontsize=axes_label_font_size,
           fontweight='bold')
plt.ylabel('Phase velocity ($km/s$)',
           fontsize=axes_label_font_size,
           fontweight='bold')
plt.legend(fancybox=True,
           shadow=True,
           framealpha=0.5,
           loc='lower right',
           fontsize=legend_font_size)
plt.savefig('Rayleigh_Phase_dispersion.jpg', dpi=400)
plt.show()
exBestVersions = []
exNomaxfuse = []

orthBestVersions = []
orthNomaxfuse = []

N = 6 #number of matrix orders we consider: 50, 100, 250, 500, 1000, 2000
ind = np.arrange(N)
width = .20 #bar width

fig = pl.figure()
ax = fig.add_subplot(111) #add the bars to the figure along the axis

#define the bars in the bar graph
r1 = ax.bar(ind, gaNomaxfuse, width, color = 'b')
r2 = ax.bar(ind+width, gaBestVersions, width, color = 'y')
r3 = ax.bar(ind+(2*width), exNomaxfuse, width, color = 'b')
r4 = ax.bar(ind+(3*width), exBestVersions, width, color = 'y')
r5 = ax.bar(ind+(4*width), orthNomaxfuse, width, color = 'b')
r6 = ax.bar(ind+(5*width), orthBestVersions, width, color = 'y')

ax.set_ylabel('Time (sec)')
ax.set_xlabel('Nomaxfuse and best version by search strategy between n = 50 and n = 2000')
ax.set_title('Timing by search strategy and matrix size')
ax.set_xticks(ind+width)
ax.set_xticklabels( ('50', '100', '250', '500', '1000', '2000') )

ax.legend()

plt.savefig('searchstratsresults.pdf')
import pandas as pd
import matplotlib as plt

permutation3 = pd.read_csv('Results/Permutation_3.csv')
permutation4 = pd.read_csv('Results/Permutation_4.csv')
permutation5 =  pd.read_csv('Results/Permutation_5.csv')

permutation3[' Median set size'].hist()
plt.savefig('dist_permutation_3.pdf')
#do the rest
	axes[0,0].set_xlabel('u-g')
	axes[0,0].set_xlabel('g-r')

	axes[0,1].plot(g-r,r-i,marker='o',linestyle='')
	axes[0,1].set_xlabel('g-r')
	axes[0,1].set_xlabel('r-i')

	axes[1,0].plot(r-i,i-z,marker='o',linestyle='')
	axes[1,0].set_xlabel('r-i')
	axes[1,0].set_xlabel('i-z')

	axes[1,1].plot(u-g,r-i,marker='o',linestyle='')
	axes[1,1].set_xlabel('u-g')
	axes[1,1].set_xlabel('r-i')
	
	plt.savefig('scatter_sdss_photometry.png')


	#Here are the contour plots
	#Step 1: use np.histogram2d to create "density" plots of the points
	H1, xedges1, yedges1 = np.histogram2d((u-g), (g-r))
	H2, xedges2, yedges2 = np.histogram2d((g-r),(r-i))
	H3, xedges3, yedges3 = np.histogram2d((r-i),(i-z))
	H4, xedges4, yedges4 = np.histogram2d((u-g),(r-i))
	
	fig,axes = plt.subplots(2,2)
	extent1 =  [yedges1[0], yedges1[-1], xedges1[0], xedges1[-1]]
	#This draws contours around the density
	cset = axes[0,0].contour(H1,colors=['black','green','blue','red'],
			linewidths=(1.9, 1.6, 1.5, 1.4),extent=extent1)
	#Label the contours!
예제 #48
0
    ##

    sc     = SparkContext( appName="Wikipedia Count" )
    lines = sc.textFile(infile)
<<<<<<< HEAD
    
    counts = lines.map(lambda line:line.split('\t')[2]).map(lambda x:(x[0:7],1)).reduceByKey(add)
    counts_by_month = counts.sortBy(lambda x: x[0])

    length = counts_by_month.count()
    x = range(0, length)
    lables = counts_by_month.map(lambda x : x[0]).collect()
    y = counts_by_month.map(lambda x : x[1]).collect()
    plt.plot(np.array(x),np.array(y))
    plt.xticks(x,lables,rotation = 'vertical')
    plt.savefig("counts_by_month.pdf")

    counts_by_month.collect()
=======
    counts = lines.map()
    
>>>>>>> 65a15a888eef7c1f146383d61b9f57882504af41
    ## YOUR CODE GOES HERE
    ## PUT YOUR RESULTS IN counts


    """with open("wikipedia_by_month.txt","w") as fout:
        for (date, count) in counts_by_month:
            fout.write("{}\t{}\n".format(date,count))"""    

    ## 
import sys
import numpy as np
import matplotlib as plt
import math

a=sys.argv[1]
data=np.loadtxt(a)

x=data[:,3]
y=data[:,4]

figura=plt.polyfit(x,y,1)
plt.scatter(x,y)
plt.plot(x,y*figura[0]*(y**4) + figura[i]*(y**3), figura[2]*(y**2), figura[3]*y + fit[4])
plt.xlabel("Pasos (x)", frontsize=20)
plt.ylabel("Distancia (y)", frontsize =20)
plt.tittle("Numero de Pasos VS Distancia con la Regresion", frontsize =15)
plt.savefig('ajuste.png')



예제 #50
0
파일: test3d.py 프로젝트: knkumar/pystuff
from mpl_toolkits.mplot3d import axes3d
import matplotlib as plt
plt.use('PS')
from pylab import *

fig = plt.figure()
ax = fig.gca(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
print "X - data"
print X
print "Y - data"
print Y
print "Z - data"
print Z
ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3)
cset = ax.contour(X, Y, Z, zdir='z', offset=-100)
cset = ax.contour(X, Y, Z, zdir='x', offset=-40)
cset = ax.contour(X, Y, Z, zdir='y', offset=40)

ax.set_xlabel('X')
ax.set_xlim3d(-40, 40)
ax.set_ylabel('Y')
ax.set_ylim3d(-40, 40)
ax.set_zlabel('Z')
ax.set_zlim3d(-100, 100)

plt.savefig("test.ps")

예제 #51
0
def train_dcgan_labeled(gen, dis, epoch0=0):
    print('CHAINER begin training');    sys.stdout.flush()

    o_gen = optimizers.Adam(alpha=0.0002, beta1=0.5)
    o_dis = optimizers.Adam(alpha=0.0002, beta1=0.5)
    print('CHAINER begin gen');    sys.stdout.flush()
    o_gen.setup(gen)
    o_dis.setup(dis)
    print('CHAINER begin add');    sys.stdout.flush()
    o_gen.add_hook(chainer.optimizer.WeightDecay(0.00001))
    o_dis.add_hook(chainer.optimizer.WeightDecay(0.00001))
    print('CHAINER begin zvis');    sys.stdout.flush()
    # zvis = (xp.random.uniform(-1, 1, (100, nz), dtype=np.float32))
    print('CHAINER begin for');    sys.stdout.flush()
    for epoch in range(epoch0,n_epoch):
        print("epoch:",epoch)
        sys.stdout.flush()
        perm = np.random.permutation(n_train)
        sum_l_dis = np.float32(0)
        sum_l_gen = np.float32(0)
        
        for i in range(0, n_train, batchsize):
            # discriminator
            # 0: from dataset
            # 1: from noise

            #print "load image start ", i
            x2 = np.zeros((batchsize, 3, 96, 96), dtype=np.float32)
            for j in range(batchsize):
                #try:
                    rnd = np.random.randint(len(dataset))
                    rnd2 = np.random.randint(2)

                    img = np.asarray(Image.open(io.BytesIO(dataset[rnd])).convert('RGB')).astype(np.float32).transpose(2, 0, 1)
                    x2[j,:,:,:] = (img[:,0:96,0:96]-128.0)/128.0
                #except:
                #    print('read image error occured', fs[rnd])
            #print "load image done"
            
            # train generator
            z = Variable(xp.random.uniform(-1, 1, (batchsize, nz), dtype=np.float32))
            x = gen(z)
            yl = dis(x)
            L_gen = F.softmax_cross_entropy(yl, Variable(xp.zeros(batchsize, dtype=np.int32)))
            L_dis = F.softmax_cross_entropy(yl, Variable(xp.ones(batchsize, dtype=np.int32)))
            
            # train discriminator
                    
            x2 = Variable(cuda.to_gpu(x2))
            yl2 = dis(x2)
            L_dis += F.softmax_cross_entropy(yl2, Variable(xp.zeros(batchsize, dtype=np.int32)))
            
            #print "forward done"

            o_gen.zero_grads()
            L_gen.backward()
            o_gen.update()
            
            o_dis.zero_grads()
            L_dis.backward()
            o_dis.update()
            
            sum_l_gen += L_gen.data.get()
            sum_l_dis += L_dis.data.get()
            
            #print "backward done"

            if i%image_save_interval==0:
                pylab.rcParams['figure.figsize'] = (16.0,16.0)
                pylab.clf()
                vissize = 100
                z = zvis
                z[50:,:] = (xp.random.uniform(-1, 1, (50, nz), dtype=np.float32))
                z = Variable(z)
                x = gen(z, test=True)
                x = x.data.get()
                for i_ in range(100):
                    tmp = ((np.vectorize(clip_img)(x[i_,:,:,:])+1)/2).transpose(1,2,0)
                    pylab.subplot(10,10,i_+1)
                    pylab.imshow(tmp)
                    pylab.axis('off')
                pylab.savefig('%s/vis_%d_%d.png'%(out_image_dir, epoch,i))
                
        serializers.save_hdf5("%s/dcgan_model_dis_%d.h5"%(out_model_dir, epoch),dis)
        serializers.save_hdf5("%s/dcgan_model_gen_%d.h5"%(out_model_dir, epoch),gen)
        serializers.save_hdf5("%s/dcgan_state_dis_%d.h5"%(out_model_dir, epoch),o_dis)
        serializers.save_hdf5("%s/dcgan_state_gen_%d.h5"%(out_model_dir, epoch),o_gen)
        print('epoch end', epoch, sum_l_gen/n_train, sum_l_dis/n_train)
예제 #52
0
def main(args):    
    files=args.cgfiles

    #Uncomment the following line to display the files in a random order.
    #random.shuffle(files)

    #Prepare the pyplot figure
    totalFigures=len(files)
    figuresPerLine=int(math.ceil(math.sqrt(totalFigures)))
    fig, ax=plt.subplots(int(math.ceil(totalFigures/figuresPerLine)),figuresPerLine, squeeze=False, figsize=(8,8))
    
    #Background color of figure (not plot)
    if args.style=="WOB":
        fig.patch.set_facecolor('black')

    #Plot one projection per file.
    for i, file_ in enumerate(files):
        #get the subplot axes (Note: axes != axis in matplotlib)
        current_axes=ax[i//figuresPerLine, i%figuresPerLine]

        #Parse the file
        cg=ftmc.CoarseGrainRNA(file_)

        # Random projection direction, if no direction present in the file
        if args.proj_direction:
            direction=list(map(float, args.proj_direction.split(",")))
        elif cg.project_from is not None:
            direction=cg.project_from
        else:
            direction=ftuv.get_random_vector()

        #Generate the projection object
        proj=ftmp.Projection2D(cg, direction, rotation=180, project_virtual_atoms=args.virtual_atoms)   

        #Simulate a reduced resolution of the image.
        if args.condense:
            proj.condense(args.condense)

        target_elems=[]
        if args.show_distances:                

            try:
                num_elems=int(args.show_distances)
            except:
                target_elems=args.show_distances.split(",")
            else:
                if num_elems>len(proj._coords.keys()):
                    raise ValueError("--show-distances must not be greater {} for the current projection ({}:'{}')".format(len(proj._coords.keys()), i, file_))
                elems=list(proj._coords.keys())
                random.shuffle(elems)
                while len(target_elems)<num_elems:
                    r=random.random()
                    if r<0.4:
                        hairpins=[ x for x in elems if x[0]=="h" and x not in target_elems ]
                        if hairpins:
                            target_elems.append(hairpins[0])
                            continue
                    if r<0.6:                        
                        multiloops=[ x for x in elems if x[0]=="m" and x not in target_elems ]
                        if multiloops:
                            target_elems.append(multiloops[0])
                            continue
                    others=[ x for x in elems if x not in target_elems]
                    target_elems.append(others[0])
        comb=list(it.combinations(target_elems, 2))
        #print(comb, target_elems)
        line2dproperties={}
        if args.style=="BOW":
            line2dproperties["color"]="black"
        elif args.style=="WOB":
            line2dproperties["color"]="white"

        #Plot the projection #
        proj.plot(current_axes, margin=15, linewidth=3, add_labels=set(target_elems), line2dproperties=line2dproperties,
                  show_distances=comb, print_distances=args.print_distances)

        #Uncomment to set a substring of the filename as a title
        #current_axes.set_title(file[-15:])

        #Hide the x- and y axis.
        current_axes.get_xaxis().set_visible(False)
        current_axes.get_yaxis().set_visible(False)

        #Print the projection direction and the filename in the plot.
        if args.show_direction or args.p:
            current_axes.text(0.01,0.01,"Projection direction: ({},{},{})".format(round(direction[0],3), round(direction[1],3), round(direction[2],3)), transform=current_axes.transAxes)
        if args.show_filename or args.p:
            current_axes.text(0.01,0.99,"File: {}".format(file_), transform=current_axes.transAxes, verticalalignment='top',)

        #Change the backgroundcolor of the plot area.
        if args.style=="WOB":
            current_axes.set_axis_bgcolor('black')

    
    #Hide additional subplots with no projection on them.
    for i in range(len(files),int(math.ceil(totalFigures/figuresPerLine))*figuresPerLine):
        ax[i//figuresPerLine, i%figuresPerLine].axis('off')

    # Reduce the space outside of the plots and between the subplots.
    plt.subplots_adjust(left=0.025, right=0.975, bottom=0.025, top=0.975, wspace=0.05, hspace=0.05)
    

    if args.out:
        for ofname in args.out:
            if args.out_path:
                ofname=os.path.join(args.out_path, ofname)
            ofname=os.path.expanduser(ofname)
            matplotlib.savefig(ofname,format=ofname[-3:])
    if not args.out or args.show:
        #Show the plot and clear it from the internal memory of matplotlib.
        plt.show()
예제 #53
0
파일: zbpCluster.py 프로젝트: fedhere/nycep
ax4 = subplot(325)

ax5 = subplot(326)
ind = 4
ax5.set_xticklabels(xlabels)
ax5.get_yaxis().set_ticks([])
plot(gfv[kmeans.labels_==ind].T,lw=0.5,color='grey')
plot(kmeans.cluster_centers_.T[:,ind],lw=2,color='#4B088A')
ax5 = subplot(326)

text(-14.5, 11, 'Total Number of Employees\n k = 5', size=16)

# save plot to pdf:
from matplotlib.backends.backend_pdf import PdfPages
pp = PdfPages('employees.pdf')
plt.savefig(pp, format='pdf')
pp.close()

# create geodataframe of different classes:
#gdf = gp.GeoDataFrame.from_file('../output/nyc-zip-code-extend.json')
gdf = gp.GeoDataFrame.from_file('../data/nyc_zipcta/nyc_zipcta.shp')

# dictionary of cluster labels for each zip code
labels = {}
for i in range(0, len(zcta)):
	labels[zcta[i]] = kmeans.labels_[i]

# add "clusterLabels" to existing gdf
labelList = []
zipList = []
for i in range(0, len(gdf)):
예제 #54
0
def show_overfitting(request):
    dic = {}

    # 实验一:对比不同模型的cross-validation结果

    # 用load_wine方法导入数据
    wine_data = datasets.load_wine()
    # print(wine_data.feature_names)
    data_input = wine_data.data
    data_output = wine_data.target

    rf_class = RandomForestClassifier()
    lr_class = LogisticRegression()
    svm_class = svm.LinearSVC()

    # print(cross_val_score(rf_class, data_input, data_output, scoring='accuracy', cv=4))

    # 1.使用随机森林方法观察准确率
    accuracy_rf = cross_val_score(
        rf_class, data_input, data_output, scoring='accuracy',
        cv=10).mean() * 100
    print('Accuracy of Random Forest is:', accuracy_rf)

    # 2.使用支持向量机方法观察准确率
    accuracy_svm = cross_val_score(
        svm_class, data_input, data_output, scoring='accuracy',
        cv=10).mean() * 100
    print('Accuracy of SVM is:', accuracy_svm)

    # 3.使用逻辑回归方法观察准确率
    accuracy_lr = cross_val_score(
        lr_class, data_input, data_output, scoring='accuracy',
        cv=10).mean() * 100
    print('Accuracy of LogisticRegression is:', accuracy_lr)

    rcParams['figure.figsize'] = 12, 10

    x = np.array([1.4 * i * np.pi / 180 for i in range(0, 300, 4)])
    np.random.seed(20)  # 固定每次生成的随机数
    y = np.sin(x) + np.random.normal(0, 0.2, len(x))
    data = pd.DataFrame(np.column_stack([x, y]), columns=['x', 'y'])
    plt.plot(data['x'], data['y'], '.')
    file = "static/img/han01.png"
    dic["pic1"] = "/" + file
    plt.savefig(file)
    # plt.show()

    for i in range(2, 16):  # power of 1 is already there
        colname = 'x_%d' % i  # new var will be x_power
        data[colname] = data['x']**i
    # print(data.head())

    def linear_regression(data, power, models_to_plot):
        # initialize predictors:
        predictors = ['x']
        if power >= 2:
            predictors.extend(['x_%d' % i for i in range(2, power + 1)])

        # Fit the model
        linreg = LinearRegression(normalize=True)
        linreg.fit(data[predictors], data['y'])
        y_pred = linreg.predict(data[predictors])

        # Check if a plot is to be made for the entered power
        if power in models_to_plot:
            plt.subplot(models_to_plot[power])
            plt.tight_layout()
            plt.plot(data['x'], y_pred)
            plt.plot(data['x'], data['y'], '.')
            plt.title('Plot for power: %d' % power)

        # Return the result in pre-defined_format
        rss = sum((y_pred - data['y'])**2)
        ret = [rss]
        ret.extend([linreg.intercept_])
        ret.extend(linreg.coef_)
        return ret

    col = ['rss', 'intercept'] + ['coef_x_%d' % i for i in range(1, 16)]
    ind = ['model_pow_%d' % i for i in range(1, 16)]
    coef_matrix_simple = pd.DataFrame(index=ind, columns=col)
    # 注意上行代码的columns不能携程column单数,画图就无法画出来了
    # 定义作图的位置与模型的复杂度
    models_to_plot = {1: 231, 3: 232, 6: 233, 8: 234, 11: 235, 14: 236}

    # 画出来
    for i in range(1, 16):
        coef_matrix_simple.iloc[i - 1, 0:i + 2] = linear_regression(
            data, power=i, models_to_plot=models_to_plot)
    file = "static/img/han02.png"
    dic["pic2"] = "/" + file
    plt.savefig(file)
    # plt.show()

    # 定义作图的位置与模型的复杂度
    models_to_plot = {
        1e-15: 231,
        1e-10: 232,
        1e-4: 233,
        1e-3: 234,
        1e-2: 235,
        5: 236
    }

    def ridge_regression(data, predictors, alpha, models_to_plot={}):
        # Fit the model:1.初始化模型配置  2.模型拟合  3.模型预测
        ridgereg = Ridge(alpha=alpha, normalize=True)
        ridgereg.fit(data[predictors], data['y'])
        # predictors的内容实际是data(定义的一种DataFrame数据结构)的某列名称
        y_pred = ridgereg.predict(data[predictors])

        # Check if a plot is to be made for the entered alpha
        if alpha in models_to_plot:
            plt.subplot(models_to_plot[alpha])
            plt.tight_layout()
            plt.plot(data['x'], y_pred)  # 画出拟合曲线图
            plt.plot(data['x'], data['y'], '.')  # 画出样本的散点图
            plt.title('Plot for alpha: %.3g' % alpha)

        # Return the result in pre-defined format
        rss = sum((y_pred - data['y'])**2)
        ret = [rss]
        ret.extend([ridgereg.intercept_])
        ret.extend(ridgereg.coef_)
        return ret

    predictors = ['x']
    predictors.extend(['x_%d' % i for i in range(2, 16)])

    # Set the different values of alpha to be tested
    alpha_ridge = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3, 1e-2, 1, 5, 10, 20]

    # Initialize the dataframe for storing coeficients
    col = ['rss', 'intercept'] + ['coef_x_%d' % i for i in range(1, 16)]
    ind = ['alpha_%.2g' % alpha_ridge[i] for i in range(0, 10)]
    coef_matrix_ridge = pd.DataFrame(index=ind, columns=col)

    models_to_plot = {
        1e-15: 231,
        1e-10: 232,
        1e-4: 233,
        1e-3: 234,
        1e-2: 235,
        5: 236
    }
    for i in range(10):
        coef_matrix_ridge.iloc[i, ] = ridge_regression(data, predictors,
                                                       alpha_ridge[i],
                                                       models_to_plot)
    file = "static/img/han03.png"
    dic["pic3"] = "/" + file
    plt.savefig(file)

    # plt.show()

    def lasso_regression(data, predictors, alpha, models_to_plot={}):
        # Fit the model
        lassoreg = Lasso(alpha=alpha, normalize=True, max_iter=1e5)
        lassoreg.fit(data[predictors], data['y'])
        y_pred = lassoreg.predict(data[predictors])
        # Check if a plot is to be made for the entered alpha
        if alpha in models_to_plot:
            plt.subplot(models_to_plot[alpha])
            plt.tight_layout()
            plt.plot(data['x'], y_pred)
            plt.plot(data['x'], data['y'], '.')
            plt.title('Plot for alpha:%.3g' % alpha)

        # Return the result in pre-defined format
        rss = sum((y_pred - data['y'])**2)
        ret = [rss]
        ret.extend([lassoreg.intercept_])
        ret.extend(lassoreg.coef_)
        return ret

    predictors = ['x']
    predictors.extend(['x_%d' % i for i in range(2, 16)])

    # Define the alpha values to test
    alpha_lasso = [1e-15, 1e-10, 1e-8, 1e-5, 1e-4, 1e-3, 1e-2, 1, 5, 10]

    # Initialize the dataframe to store coefficients
    col = ['rss', 'intercept'] + ['coef_x_%d' % i for i in range(1, 16)]
    ind = ['alpha_%.2g' % alpha_lasso[i] for i in range(0, 10)]
    coef_matrix_lasso = pd.DataFrame(index=ind, columns=col)

    # Define the models_to_plot
    models_to_plot = {
        1e-10: 231,
        1e-5: 232,
        1e-4: 233,
        1e-3: 234,
        1e-2: 235,
        1: 236
    }

    # Iterate over the 10 alpha values:
    for i in range(10):
        coef_matrix_lasso.iloc[i, ] = lasso_regression(data, predictors,
                                                       alpha_lasso[i],
                                                       models_to_plot)
    file = "static/img/han04.png"
    dic["pic4"] = "/" + file
    plt.savefig(file)
    # plt.show()
    return render(request, "overfitting.html", dic)
	print t
	print v

initialize(v, s, t, dt, n)
calculate(v, s, t, dt, n)
store(v, t, n)

#plot
plt.figure(1)
plt.subplot(211)
plt.plot(t, v,"g-", linewidth=2.0)
plt.scatter(t, v)
plt.title('The Velocity of a Free Falling Object')
plt.xlabel('Time($t$)', fontsize=14)
plt.ylabel('Velocity($m/s$)', fontsize=14)
plt.text(3,-60,r'$g = 9.8 m/s^2$', fontsize=16)
plt.grid(True)

plt.subplot(212)
plt.plot(t, s,"g-", linewidth=2.0)
plt.scatter(t, s)
plt.title('The Displacement of a Free Falling Object')
plt.xlabel('Time($t$)', fontsize=14)
plt.ylabel('Displacement($m$)', fontsize=14)
plt.text(3,-300,r'$g = 9.8 m/s^2$', fontsize=16)
plt.grid(True)

plt.show()
plt.savefig("ex1.jpg")
read()
예제 #56
0
def plot_trace(x_l, n_l, file_path):
    figure()
    plot(n_l,x_l)
    plt.savefig(file_path)
예제 #57
0
def plot_hist(x_l, file_path):
    figure()
    n, bins, patches = hist(x_l, 20, histtype='bar')
    plt.savefig(file_path)
예제 #58
0
    counts = lines.map(lambda date: date.split('\t')[2]) \
                  .map(lambda month:month[0:7])  \
		  .map(lambda x: (x,1))  \
                  .reduceByKey(add)
    month_sorted = counts.sortBy(lambda x: x[0]).collect()


    ## YOUR CODE GOES HERE
    ## PUT YOUR RESULTS IN counts


    with open("wikipedia_by_month.txt","w") as fout:
        for (date, count) in month_sorted:
            fout.write("{}\t{}\n".format(date,count))
    
    ## 
    ## Terminate the Spark job
    ##
    #############
    # plot
    #############
    data = pandas.read_csv("wikipedia_by_month.txt", sep='\t', header = None, names=['date', 'count'])
    fig = pyplot.figure()
    index = np.arange(len(data[0]))
    pyplot.bar(index, data['count'], width = width)
    fig.autofmt_xdate()
    plt.xticks(index, data['date'], rotation = 'vertical')
    plt.savefig("figure.pdf")
    
    sc.stop()
	t = pickle.load(pickle_file)
	v = pickle.load(pickle_file)

initialize(v, s, t, dt, n)
calculate(v, s, t, dt, n)
store(v, t, n)

#plot
plt.figure(1)
plt.subplot(211)
plt.plot(t, v,"g-", linewidth=1.0)
plt.scatter(t, v)
plt.title('The Velocity of a Free Falling Object')
#plt.xlabel('Time($t$)', fontsize=12) (cancel because words overlap)
plt.ylabel('Velocity($m/s$)', fontsize=12)
plt.text(3,0,r'$g = 9.8 m/s^2$', fontsize=16)
plt.grid(True)

plt.subplot(212)
plt.plot(t, s,"g-", linewidth=1.0)
plt.scatter(t, s)
plt.title('The Displacement of a Free Falling Object')
plt.xlabel('Time($t$)', fontsize=12)
plt.ylabel('Displacement($m$)', fontsize=12)
plt.text(3,0,r'$g = 9.8 m/s^2$', fontsize=16)
plt.grid(True)

plt.show()
plt.savefig("ex4.jpg")
read()