def fire(self):
        # X = αX + (1-α)[WI*I + W*X]
        X = plus(times(X, self.alpha),
                 times(plus(dot(WI, I), dot(W, X)), 1 - self.alpha))
        X = tanh(X)  #sigmoid(X)

        # Y = WO*X
        Y = dot(WO, X)
 def fire(self):
     # X = αX + (1-α)[WI*I + W*X]
     self.X = plus(
         times(self.X, self.alpha),
         times(plus(dot(self.WI, [1] + self.I), dot(self.W, [1] + self.X)),
               1 - self.alpha))
     self.X = tanh(self.X)
     # Y = WO*X
     self.Y = dot(self.WO, [1] + self.X)
def ljapexp(q=150, iterations=40, gamma0=10**-8, sigma=0.1):
	# input, hidden and output layer size
	p = 1 
	#q = 150
	r = 1 #300

	# strength of input activations
	INPUT_STRENGTH = 10**0
	def input_dist():
		return INPUT_STRENGTH*uniform(-1,1)

	def normgen(mu, sigma):
		def n():
			return normalvariate(mu, sigma)
		return n

	def unigen(a,b):
		def u():
			return uniform(a,b)
		return u

	def zerogen():
		def zero():	
			return 0
		return zero

	# matrix and initial activation randomization
	r = Reservoir(p, q, r)
	r.randomize_matrices(normgen(0,1))
	r.WI = random_matrix(q,p+1, unigen(-0.1,0.1))
	r.W  = random_matrix(q,q+1, normgen(0,sigma))
	#r.randomize_vectors(normgen(0,1))

	# make a copy of the reservoir
	r2 = copy.deepcopy(r)

	#perturbation = random_vector(q)
	#perturbation = times(perturbation, gamma0 / vector_len(perturbation))
	priemersum = 0
	for perturbed_node in range(q):
		r.randomize_vectors(normgen(0,1))
		perturbation = [0 for _ in range(q)] 
		perturbation[perturbed_node] = gamma0

		r2.X = plus(r2.X, perturbation)

		difvec = plus(times(r.X, -1), r2.X)

		exponentsum = 0
		lambdy = [0]*iterations
		for it in range(0, iterations):
			# introduce a random input
			r.I = random_vector(r.p, input_dist)
			r2.I = r.I
			
			# run one setp
			r.fire()
			r2.fire()

			# calculate the difference
			difvec = plus(times(r.X, -1), r2.X)
			gammaK = vector_len(difvec)

			# renormalize
			r2.X = plus(r.X, times(difvec, gamma0 / gammaK))
			
			# record lambda
			mylog = math.log(gammaK / gamma0)
			lambdy[it] = mylog

		priemer = sum(lambdy) / iterations
		disperzia = sum([ (x-priemer)*(x-priemer) for x in lambdy]) / iterations
		priemersum += priemer
		print("\rnodeindex=%d" % perturbed_node, end="")

	return priemersum / q
r.WI = random_matrix(q, p + 1, unigen(-0.1, 0.1))
r.W = random_matrix(q, q + 1, normgen(0, 10**(-0.8)))
r.randomize_vectors(normgen(0, 1))

# make a copy of the reservoir
r2 = copy.deepcopy(r)

#perturbation = random_vector(q)
#perturbation = times(perturbation, gamma0 / vector_len(perturbation))
perturbation = [0] * q
perturbation[randrange(q)] = gamma0

#print(perturbation)
r2.X = plus(r2.X, perturbation)

difvec = plus(times(r.X, -1), r2.X)
#print("difvec = %s" % difvec)
f = open('output.dat', 'w')

exponentsum = 0

lambdy = [0] * ITERATIONS
for it in range(0, ITERATIONS):
    r.I = random_vector(r.p, input_dist)
    r2.I = r.I
    r.fire()
    r2.fire()
    difvec = plus(times(r.X, -1), r2.X)
    gammaK = vector_len(difvec)
    r2.X = plus(r.X, times(difvec, gamma0 / gammaK))
    mylog = math.log(gammaK / gamma0)
	def fire(self):
		# X = αX + (1-α)[WI*I + W*X]
		self.X = plus(times(self.X, self.alpha), times(plus( dot(self.WI, [1]+self.I), dot(self.W,[1]+self.X)), 1 - self.alpha))
		self.X = tanh(self.X)
		# Y = WO*X
		self.Y = dot(self.WO, [1]+self.X)
예제 #6
0
def ljapexp(q=150, iterations=40, gamma0=10**-8, sigma=0.1):
    # input, hidden and output layer size
    p = 1
    #q = 150
    r = 1  #300

    # strength of input activations
    INPUT_STRENGTH = 10**0

    def input_dist():
        return INPUT_STRENGTH * uniform(-1, 1)

    def normgen(mu, sigma):
        def n():
            return normalvariate(mu, sigma)

        return n

    def unigen(a, b):
        def u():
            return uniform(a, b)

        return u

    def zerogen():
        def zero():
            return 0

        return zero

    # matrix and initial activation randomization
    r = Reservoir(p, q, r)
    r.randomize_matrices(normgen(0, 1))
    r.WI = random_matrix(q, p + 1, unigen(-0.1, 0.1))
    r.W = random_matrix(q, q + 1, normgen(0, sigma))
    #r.randomize_vectors(normgen(0,1))

    # make a copy of the reservoir
    r2 = copy.deepcopy(r)

    #perturbation = random_vector(q)
    #perturbation = times(perturbation, gamma0 / vector_len(perturbation))
    priemersum = 0
    for perturbed_node in range(q):
        r.randomize_vectors(normgen(0, 1))
        perturbation = [0 for _ in range(q)]
        perturbation[perturbed_node] = gamma0

        r2.X = plus(r2.X, perturbation)

        difvec = plus(times(r.X, -1), r2.X)

        exponentsum = 0
        lambdy = [0] * iterations
        for it in range(0, iterations):
            # introduce a random input
            r.I = random_vector(r.p, input_dist)
            r2.I = r.I

            # run one setp
            r.fire()
            r2.fire()

            # calculate the difference
            difvec = plus(times(r.X, -1), r2.X)
            gammaK = vector_len(difvec)

            # renormalize
            r2.X = plus(r.X, times(difvec, gamma0 / gammaK))

            # record lambda
            mylog = math.log(gammaK / gamma0)
            lambdy[it] = mylog

        priemer = sum(lambdy) / iterations
        disperzia = sum([(x - priemer) * (x - priemer)
                         for x in lambdy]) / iterations
        priemersum += priemer
        print("\rnodeindex=%d" % perturbed_node, end="")

    return priemersum / q
r.WI = random_matrix(q,p+1, unigen(-0.1,0.1))
r.W  = random_matrix(q,q+1, normgen(0,10**(-0.8)))
r.randomize_vectors(normgen(0,1))

# make a copy of the reservoir
r2 = copy.deepcopy(r)

#perturbation = random_vector(q)
#perturbation = times(perturbation, gamma0 / vector_len(perturbation))
perturbation = [0]*q
perturbation[randrange(q)] = gamma0

#print(perturbation)
r2.X = plus(r2.X, perturbation)

difvec = plus(times(r.X, -1), r2.X)
#print("difvec = %s" % difvec)
f = open('output.dat','w')

exponentsum = 0

lambdy = [0]*ITERATIONS
for it in range(0, ITERATIONS):
	r.I = random_vector(r.p, input_dist)
	r2.I = r.I
	r.fire()
	r2.fire()
	difvec = plus(times(r.X, -1), r2.X)
	gammaK = vector_len(difvec)
	r2.X = plus(r.X, times(difvec, gamma0 / gammaK))
	mylog = math.log(gammaK / gamma0)