def metrics(a, appVal, degenName, pcLoss, edgePCCons = [v for v in range(1,11)], dVal = "2", thresholdtype = "local" ): appValW = appVal appValT = appVal # prepare matrices for weighted measures # pcCent = mbt.np.zeros((len(a.G.nodes()), 10)) betCentT = mbt.np.zeros((len(a.G.nodes()), 10)) # nM = mbt.np.zeros((10)) # wmd = mbt.np.zeros((len(a.G.nodes()), 10)) # pcCentNm = mbt.np.zeros((len(a.G.nodes()), 10)) # nMNm = mbt.np.zeros((10)) # wmdNm = mbt.np.zeros((len(a.G.nodes()), 10)) # QNm = mbt.np.zeros((10)) # list of all nodes present at the beginning in case they're lost later allNodes = [v for v in a.G.nodes()] # unweighted measures for n,e in enumerate(edgePCCons): ofb = '_'.join(["brain", degenName, thresholdtype, str(e), "d"+dVal+"_"]) a.localThresholding(edgePC=e) a.removeUnconnectedNodes() a.makebctmat() a.weightToDistance() propDict = {"edgePC":str(a.edgePC), "pcLoss":pcLoss} degs = a.G.degree(weight='weight') extras.writeResults(degs, "degreeWt", ofb, propDict=propDict, append=appVal) # weighted betweenness centrality bcT = mbt.centrality.betweenness_centrality(a.G, weight='distance') betCentT[:,n] = [bcT[v] if v in a.G.nodes() else mbt.np.nan for v in allNodes] # # weighted modularity metrics # ci = bct.modularity_louvain_und_sign(a.bctmat) # Q = ci[1] # ciN = a.assignbctResult(ci[0]) # extras.writeResults(Q, "QWt", ofb, propDict=propDict, append=appValT) # extras.writeResults(ciN, "ciWt", ofb, propDict=propDict, append=appValT) # # nMWt = len(mbt.np.unique(ci[0])) # nM[n] = nMWt # extras.writeResults(nMWt, "nMWt", ofb, propDict=propDict, append=appValT) # del(nMWt) # # wmdWt = extras.withinModuleDegree(a.G, ciN, weight='weight') # wmd[:,n] = [wmdWt[v] for v in a.G.nodes()] # extras.writeResults(wmdWt, "wmdWt", ofb, propDict=propDict, append=appValT) # del wmdWt # # pcCentWt = bct.participation_coef_sign(a.bctmat,ci[0]) # pcCent[:,n] = pcCentWt # pcCentWt = a.assignbctResult(pcCentWt) # extras.writeResults(pcCentWt, "pcCentWt", ofb, propDict=propDict, append=appValT) # # # Newman partitioning # ciNm = bct.modularity_und(a.bctmat) # QNmWt = ciNm[1] # QNm[n] = QNmWt # ciNNm = a.assignbctResult(ciNm[0]) # extras.writeResults(QNmWt, "QNmWt", ofb, propDict=propDict, append=appValT) # extras.writeResults(ciNNm, "ciNmWt", ofb, propDict=propDict, append=appValT) # # nMNmWt = len(mbt.np.unique(ciNm[0])) # nMNm[n] = nMNmWt # extras.writeResults(nMNmWt, "nMNmWt", ofb, propDict=propDict, append=appValT) # del(nMNmWt) # # pcCentNmWt = bct.participation_coef_sign(a.bctmat,ciNm[0]) # pcCentNm[:,n] = pcCentNmWt # pcCentNmWt = a.assignbctResult(pcCentNmWt) # extras.writeResults(pcCentNmWt, "pcCentNmWt", ofb, propDict=propDict, append=appValT) # # wmdNmWt = extras.withinModuleDegree(a.G, ciNNm, weight='weight') # wmdNm[:,n] = [wmdNmWt[v] for v in a.G.nodes()] # extras.writeResults(wmdNmWt, "wmdNmWt", ofb, propDict=propDict, append=appValT) # del wmdNmWt # # appValT=True # now to collect measures in a binary graph a.binarise() a.weightToDistance() a.makebctmat() #### small worldness metrics #### degs = mbt.nx.degree(a.G) extras.writeResults(degs, "degree", ofb, propDict=propDict, append=appVal) degsNorm = extras.normaliseNodeWise(a.G, mbt.nx.degree, inVal=degs) extras.writeResults(degsNorm, "degreeNorm", ofb, propDict=propDict, append=appVal) cc = mbt.nx.clustering(a.G) extras.writeResults(cc, "cc", ofb, propDict=propDict, append=appVal) ccNorm = extras.normaliseNodeWise(a.G, mbt.nx.clustering, inVal=cc) extras.writeResults(ccNorm, "ccNorm", ofb, propDict=propDict, append=appVal) clustCoeff = mbt.np.mean(cc.values()) extras.writeResults(clustCoeff, "clusterCoeff", ofb, propDict=propDict, append=appVal) clustCoeffNorm = mbt.np.mean(ccNorm.values()) extras.writeResults(clustCoeffNorm, "clusterCoeffNorm", ofb, propDict=propDict, append=appVal) del(clustCoeff) del(clustCoeffNorm) del(cc) del(ccNorm) pl = mbt.nx.average_shortest_path_length(a.G) extras.writeResults(pl, "pl", ofb, propDict=propDict, append=appVal) plNorm = extras.normalise(a.G, mbt.nx.average_shortest_path_length, inVal=pl) extras.writeResults(plNorm, "plNorm", ofb, propDict=propDict, append=appVal) del(pl) del(plNorm) ge = extras.globalefficiency(a.G) extras.writeResults(ge, "ge", ofb, propDict=propDict, append=appVal) geNorm = extras.normalise(a.G, extras.globalefficiency, inVal=ge) extras.writeResults(geNorm, "geNorm", ofb, propDict=propDict, append=appVal) del(ge) del(geNorm) le = extras.localefficiency(a.G) extras.writeResults(le, "le", ofb, propDict=propDict, append=appVal) leNorm = extras.normaliseNodeWise(a.G, extras.localefficiency, inVal=le) extras.writeResults(leNorm, "leNorm", ofb, propDict=propDict, append=appVal) del(le) del(leNorm) # hub metrics # betCent = mbt.nx.centrality.betweenness_centrality(a.G) # extras.writeResults(betCent, "betCent", ofb, propDict=propDict, append=appVal) # # betCentNorm = extras.normaliseNodeWise(a.G, mbt.nx.centrality.betweenness_centrality, inVal=betCent) # extras.writeResults(betCentNorm, "betCentNorm", ofb, propDict=propDict, append=appVal) # del(betCent, betCentNorm) # # closeCent = mbt.nx.centrality.closeness_centrality(a.G) # extras.writeResults(closeCent, "closeCent", ofb, propDict=propDict, append=appVal) # # closeCentNorm = extras.normaliseNodeWise(a.G, mbt.nx.centrality.closeness_centrality, inVal=closeCent) # extras.writeResults(closeCentNorm, "closeCentNorm", ofb, propDict=propDict, append=appVal) # del(closeCent, closeCentNorm) try: eigCent = mbt.nx.centrality.eigenvector_centrality_numpy(a.G) except: eigCent = dict(zip(a.G.nodes(), ['NA' for n in a.G.nodes()])) extras.writeResults(eigCent, "eigCentNP", ofb, propDict=propDict, append=appVal) try: eigCentNorm = extras.normaliseNodeWise(a.G, mbt.nx.centrality.eigenvector_centrality_numpy, inVal=eigCent) except: eigCentNorm = dict(zip(a.G.nodes(), ['NA' for n in a.G.nodes()])) extras.writeResults(eigCentNorm, "eigCentNorm", ofb, propDict=propDict, append=appVal) del(eigCent, eigCentNorm) eln = extras.edgeLengths(a.G, nodeWise=True) extras.writeResults(eln, "eln", ofb, propDict=propDict, append=appVal) elnNorm = {v:[] for v in a.G.nodes()} elNorm = [] el = extras.edgeLengths(a.G) meanEL = mbt.np.mean(mbt.np.array((el.values()), dtype=float)) extras.writeResults(meanEL, "meanEL", ofb, propDict=propDict, append=appVal) for i in range(500): rand = mbt.nx.configuration_model(a.G.degree().values()) rand = mbt.nx.Graph(rand) # convert to simple graph from multigraph mbt.nx.set_node_attributes(rand, 'xyz', {rn:a.G.node[v]['xyz'] for rn,v in enumerate(a.G.nodes())}) # copy across spatial information res = extras.edgeLengths(rand, nodeWise=True) elNorm.extend([v for v in extras.edgeLengths(rand).values()]) for x,node in enumerate(elnNorm): elnNorm[node].append(res[x]) for node in elnNorm: elnNorm[node] = eln[node]/mbt.np.mean(elnNorm[node]) extras.writeResults(elnNorm, "elnNorm", ofb, propDict=propDict, append=appVal) del(eln, elnNorm) meanEL = mbt.np.mean(mbt.np.array((el.values()), dtype=float)) meanELNorm = mbt.np.mean(mbt.np.array((elNorm), dtype=float)) extras.writeResults(meanEL, "meanEL", ofb, propDict=propDict, append=appVal) extras.writeResults(meanELNorm, "meanELNorm", ofb, propDict=propDict, append=appVal) medianEL = mbt.np.median(mbt.np.array((el.values()), dtype=float)) medianELNorm = mbt.np.median(mbt.np.array((elNorm), dtype=float)) extras.writeResults(medianEL, "medianEL", ofb, propDict=propDict, append=appVal) extras.writeResults(medianELNorm, "medianELNorm", ofb, propDict=propDict, append=appVal) del(el, elNorm, meanEL, meanELNorm, medianEL, medianELNorm) # # modularity metrics # ci = bct.modularity_louvain_und(a.bctmat) # Q = ci[1] # ciN = a.assignbctResult(ci[0]) # extras.writeResults(Q, "Q", ofb, propDict=propDict, append=appVal) # extras.writeResults(ciN, "ci", ofb , propDict=propDict, append=appVal) # # pcCent = bct.participation_coef(a.bctmat,ci[0]) # pcCent = a.assignbctResult(pcCent) # extras.writeResults(pcCent, "pcCent", ofb, propDict=propDict, # append=appVal) # del pcCent # # wmd = extras.withinModuleDegree(a.G, ciN) # extras.writeResults(wmd, "wmd", ofb, propDict=propDict, append=appVal) # del wmd # # nM = len(mbt.np.unique(ci[0])) # extras.writeResults(nM, "nM", ofb, propDict=propDict, append=appVal) # del(nM) # del(ci, ciN, Q) # # # rich club measures # rc = mbt.nx.rich_club_coefficient(a.G, normalized=False) # extras.writeResults(rc, "rcCoeff", ofb, propDict=propDict, append=appVal) # del(rc) # # robustness # rbt = a.robustness() # extras.writeResults(rbt, "robustness", ofb, propDict=propDict, # append=appVal) # # # Newman partitioning # ciNm = bct.modularity_und(a.bctmat) # QNm= ciNm[1] # ciNNm = a.assignbctResult(ciNm[0]) # extras.writeResults(QNm, "QNm", ofb, propDict=propDict, append=appValT) # extras.writeResults(ciNNm, "ciNm", ofb, propDict=propDict, append=appValT) # del QNm # # nMNm = len(mbt.np.unique(ciNm[0])) # extras.writeResults(nMNm, "nMNm", ofb, propDict=propDict, append=appValT) # del nMNm # # pcCentNm = bct.participation_coef_sign(a.bctmat,ciNm[0]) # pcCentNm = a.assignbctResult(pcCentNm) # extras.writeResults(pcCentNm, "pcCentNm", ofb, propDict=propDict, append=appValT) # del pcCentNm # # wmdNm = extras.withinModuleDegree(a.G, ciNNm, weight='weight') # extras.writeResults(wmdNm, "wmdNm", ofb, propDict=propDict, append=appValT) # del(wmdNm,ciNNm,ciNm) # append any further iterations appVal = True # propDict = {"pcLoss":pcLoss} # # weighted measures # # a.weightToDistance() # ofb = '_'.join(["brain", degenName, "d"+dVal+"_"]) # a.makebctmat() # # # weighted hub metrics # degs = a.G.degree(weight='weight') # extras.writeResults(degs, "degree_wt", ofb, propDict=propDict, append=appValW) # # betCent = mbt.centrality.betweenness_centrality(a.G, weight='distance') # extras.writeResults(betCent, "betCent_wt", ofb, propDict=propDict, append=appValW) # # closeCent = mbt.centrality.closeness_centrality(a.G, distance='distance') # extras.writeResults(closeCent, "closeCent_wt", ofb, propDict=propDict, append=appValW) # # eigCent = mbt.centrality.eigenvector_centrality_numpy(a.G) # extras.writeResults(eigCent, "eigCentNP_wt", ofb, propDict=propDict, append=appValW) # del(eigCent) # # # weighted modularity metrics # ci = bct.modularity_louvain_und_sign(a.bctmat) # Q = ci[1] # ciN = a.assignbctResult(ci[0]) # extras.writeResults(Q, "Q_wt", ofb, propDict=propDict, append=appValW) # extras.writeResults(ciN, "ci_wt", ofb, propDict=propDict, append=appValW) # # nM = len(mbt.np.unique(ci[0])) # extras.writeResults(nM, "nM_wt", ofb, propDict=propDict, append=appValW) # del(nM) # # wmd = extras.withinModuleDegree(a.G, ciN, weight='weight') # extras.writeResults(wmd, "wmd_wt", ofb, propDict=propDict, append=appValW) # del wmd # #pl = mbt.nx.average_shortest_path_length(a.G, weight="distance") #extras.writeResults(pl, "pl_wt", ofb, append=appVal) #del(pl) # #ge = extras.globalefficiency(a.G, weight="distance") #extras.writeResults(ge, "ge_wt", ofb, append=appVal) #del(ge) # #le = extras.localefficiency(a.G, weight="distance") #extras.writeResults(le, "le_wt", ofb, append=appVal) #del(le) # #pcCent = mbt.np.zeros((len(a.G.nodes()), 10)) #betCentT = mbt.np.zeros((len(a.G.nodes()), 10)) #cc = mbt.np.zeros((len(a.G.nodes()), 10)) # #nM = mbt.np.zeros((10)) ##clustCoeff = mbt.np.zeros((10)) #wmd = mbt.np.zeros((len(a.G.nodes()), 10)) #Q = mbt.np.zeros((10)) # #pcCentIM = mbt.np.zeros((len(a.G.nodes()), 10)) #nMIM = mbt.np.zeros((10)) #wmdIM = mbt.np.zeros((len(a.G.nodes()), 10)) #QIM = mbt.np.zeros((10)) # #pcCentNm = mbt.np.zeros((len(a.G.nodes()), 10)) #nMNm = mbt.np.zeros((10)) #wmdNm = mbt.np.zeros((len(a.G.nodes()), 10)) #QNm = mbt.np.zeros((10)) # #appValT=False # #for n,i in enumerate([v for v in range(1,11)]): # a.localThresholding(edgePC=i) # a.removeUnconnectedNodes() # a.makebctmat() # a.weightToDistance() # ofbT = '_'.join(["brain", thresholdtype, str(i), "d"+dVal+"_"]) # propDict = {"edgePC":a.edgePC} # # # weighted modularity metrics # ci = bct.modularity_louvain_und_sign(a.bctmat) # QWt = ci[1] # Q[n] = QWt # ciN = a.assignbctResult(ci[0]) # extras.writeResults(QWt, "QWt", ofbT, propDict=propDict, append=appValT) # extras.writeResults(ciN, "ciWt", ofbT, propDict=propDict, append=appValT) # del QWt # # nMWt = len(mbt.np.unique(ci[0])) # nM[n] = nMWt # extras.writeResults(nMWt, "nMWt", ofbT, propDict=propDict, append=appValT) # del(nMWt) # # wmdWt = extras.withinModuleDegree(a.G, ciN, weight='weight') # wmd[:,n] = [wmdWt[v] for v in a.G.nodes()] # extras.writeResults(wmdWt, "wmdWt", ofbT, propDict=propDict, append=appValT) # del wmdWt # # pcCentWt = bct.participation_coef_sign(a.bctmat,ci[0]) # pcCent[:,n] = pcCentWt # pcCentWt = a.assignbctResult(pcCentWt) # extras.writeResults(pcCentWt, "pcCentWt", ofbT, propDict=propDict, append=appValT) # # # infomap partitioning # bIM = infomap.nx2infomap(a.G) # del(bIM) # f = open("nxdigraph.clu", "r") # recapture results from output file # modules = mbt.np.array([int(v.strip('\n')) for v in f.readlines()[1:]]) # f.close() # remove("nxdigraph.clu") # # ciNIM = a.assignbctResult(modules) # QIMWt = community.modularity(ciNIM, a.G) # QIM[n] = QIMWt # extras.writeResults(QIMWt, "QIMWt", ofbT, propDict=propDict,append=appValT) # extras.writeResults(ciNIM, "ciIMWt", ofbT, propDict=propDict, append=appValT) # del(QIMWt) # # nMIMWt = len(mbt.np.unique(modules)) # nMIM[n] = nMIMWt # extras.writeResults(nMIMWt, "nMIMWt", ofbT, propDict=propDict, append=appValT) # del(nMIMWt) # # pcCentIMWt = bct.participation_coef_sign(a.bctmat, modules) # pcCentIM[:,n] = pcCentIMWt # pcCentIMWt = a.assignbctResult(pcCentIMWt) # extras.writeResults(pcCentIMWt, "pcCentIMWt", ofbT, propDict=propDict, append=appValT) # del(pcCentIMWt) # # wmdIMWt = extras.withinModuleDegree(a.G, ciNIM, weight='weight') # wmdIM[:,n] = [wmdIMWt[v] for v in a.G.nodes()] # extras.writeResults(wmdIMWt, "wmdIMWt", ofbT, propDict=propDict, append=appValT) # del wmdIMWt # # # Newman partitioning # ciNm = bct.modularity_und(a.bctmat) # QNmWt = ciNm[1] # QNm[n] = QNmWt # ciNNm = a.assignbctResult(ciNm[0]) # extras.writeResults(QNmWt, "QNmWt", ofbT, propDict=propDict, append=appValT) # extras.writeResults(ciNNm, "ciNmWt", ofbT, propDict=propDict, append=appValT) # # nMNmWt = len(mbt.np.unique(ciNm[0])) # nMNm[n] = nMNmWt # extras.writeResults(nMNmWt, "nMNmWt", ofbT, propDict=propDict, append=appValT) # del(nMNmWt) # # pcCentNmWt = bct.participation_coef_sign(a.bctmat,ciNm[0]) # pcCentNm[:,n] = pcCentNmWt # pcCentNmWt = a.assignbctResult(pcCentNmWt) # extras.writeResults(pcCentNmWt, "pcCentNmWt", ofbT, propDict=propDict, append=appValT) # # wmdNmWt = extras.withinModuleDegree(a.G, ciNNm, weight='weight') # wmdNm[:,n] = [wmdNmWt[v] for v in a.G.nodes()] # extras.writeResults(wmdNmWt, "wmdNmWt", ofbT, propDict=propDict, append=appValT) # del wmdNmWt # # ccWt = mbt.nx.clustering(a.G, weight="weight") # cc[:,n] = [ccWt[v] for v in a.G.nodes()] # extras.writeResults(ccWt, "ccWt", ofbT, propDict=propDict, append=appValT) # # clustCoeffWt = mbt.np.average(ccWt.values()) # clustCoeff[n] = clustCoeffWt # extras.writeResults(clustCoeffWt, "clustCoeffWt", ofbT, propDict=propDict, append=appValT) # del(clustCoeffWt) # del(ccWt) # # bcT = mbt.nx.centrality.betweenness_centrality(a.G, weight='distance') # betCentT[:,n] = [bcT[v] for v in a.G.nodes()] # appValT=True # # #Q = mbt.np.mean(Q) #extras.writeResults(Q, "QWt_wt", ofb, append=appVal) #del(Q) # #pcCent = a.assignbctResult(mbt.np.mean(pcCent, axis=1)) #extras.writeResults(pcCent, "pcCentWt_wt", ofb, append=appVal) # del(pcCent,ci) # # betCentT = a.assignbctResult(mbt.np.mean(betCentT, axis=1)) # extras.writeResults(betCentT, "betCentWtT_wt", ofb, propDict=propDict, append=appValW) # # nM = mbt.np.mean(nM) # extras.writeResults(nM, "nMWt_wt", ofb, propDict=propDict, append=appValW) # del(nM) # # wmd = a.assignbctResult(mbt.np.mean(wmd, axis=1)) # extras.writeResults(wmd, "wmdWt_wt", ofb, propDict=propDict, append=appValW) # del(wmd) # # # Newman # QNm = mbt.np.mean(QNm) # extras.writeResults(QNm, "QNmWt_wt", ofb, append=appValW) # del(QNm) # # pcCentNm = a.assignbctResult(mbt.np.mean(pcCentNm, axis=1)) # extras.writeResults(pcCentNm, "pcCentNmWt_wt", ofb, append=appValW) # del(pcCentNm) # # wmdNm = a.assignbctResult(mbt.np.mean(wmdNm, axis=1)) # extras.writeResults(wmdNm, "wmdNmWt_wt", ofb, append=appValW) # del(wmdNm) # # nMNm = mbt.np.mean(nMNm) # extras.writeResults(nMNm, "nMNmWt_wt", ofb, append=appValW) # del(nMNm) a.applythreshold()
extras.writeResults(ccNorm, "ccNorm", ofb, propDict=propDict, append=appVal) clustCoeff = np.mean(cc.values()) extras.writeResults(clustCoeff, "clusterCoeff", ofb, propDict=propDict, append=appVal) clustCoeffNorm = np.mean(ccNorm.values()) extras.writeResults(clustCoeffNorm, "clusterCoeffNorm", ofb, propDict=propDict, append=appVal) del(clustCoeff) del(clustCoeffNorm) del(cc) del(ccNorm) pl = mbt.nx.average_shortest_path_length(a.G) extras.writeResults(pl, "pl", ofb, propDict=propDict, append=appVal) plNorm = extras.normalise(a.G, mbt.nx.average_shortest_path_length, inVal=pl) extras.writeResults(plNorm, "plNorm", ofb, propDict=propDict, append=appVal) del(pl) del(plNorm) ge = extras.globalefficiency(a.G) extras.writeResults(ge, "ge", ofb, propDict=propDict, append=appVal) geNorm = extras.normalise(a.G, extras.globalefficiency, inVal=ge) extras.writeResults(geNorm, "geNorm", ofb, propDict=propDict, append=appVal) del(ge) del(geNorm) le = extras.localefficiency(a.G) extras.writeResults(le, "le", ofb, propDict=propDict, append=appVal)