def make_cpmf_PrXcZ(self, X, Z, PrZ=None): if PrZ is None: PrZ = self.AD_tree.make_pmf(list(Z)) unsorted_variables = [X] + Z joint_variables = sorted(unsorted_variables) index = {var: joint_variables.index(var) for var in joint_variables} PrXZ = self.AD_tree.make_pmf(joint_variables) PrXcZ = CPMF(None, None) for joint_key, joint_p in PrXZ.items(): zkey = tuple([joint_key[index[zvar]] for zvar in Z]) varkey = [ joint_key[index[var]] for var in unsorted_variables if var not in Z ][0] if len(zkey) == 1: zkey = zkey[0] try: pmf = PrXcZ.conditional_probabilities[zkey] except KeyError: pmf = PMF(None) PrXcZ.conditional_probabilities[zkey] = pmf try: pmf.probabilities[varkey] = joint_p / PrZ.p(zkey) except ZeroDivisionError: pass return (PrXcZ, PrXZ)
def test_joint_variables_pmf(): animals = Variable(['cat', 'dog', 'cat', 'mouse', 'dog', 'cat']) animals.ID = 3 animals.name = 'animals' colors = Variable(['gray', 'yellow', 'brown', 'silver', 'white', 'gray']) colors.ID = 2 colors.name = 'colors' sizes = Variable(['small', 'small', 'large', 'small', 'normal', 'small']) sizes.ID = 1 sizes.name = 'sizes' fauna = JointVariables(sizes, colors, animals) fauna.update_values() assert [1, 2, 3] == fauna.variableIDs assert fauna.variables[0] is sizes assert fauna.variables[1] is colors assert fauna.variables[2] is animals expected_values = [('large', 'brown', 'cat'), ('normal', 'white', 'dog'), ('small', 'gray', 'cat'), ('small', 'silver', 'mouse'), ('small', 'yellow', 'dog')] assert fauna.values == expected_values PrFauna = PMF(fauna) assert PrFauna.p('small', 'gray', 'cat') == 2 / 6 assert PrFauna.p('small', 'silver', 'mouse') == 1 / 6 assert PrFauna.p('small', 'silver', 'dog') == 0 singleton_joint = JointVariables(animals) assert ['cat', 'dog', 'cat', 'mouse', 'dog', 'cat'] == singleton_joint.instances()
def test_conditional_pmf__multiple_values(): sizes = Variable(['small', 'small', 'large', 'small', 'normal', 'small']) sizes.ID = 1 sizes.name = 'sizes' colors = Variable(['gray', 'yellow', 'brown', 'silver', 'white', 'gray']) colors.ID = 2 colors.name = 'colors' animals = Variable(['cat', 'dog', 'cat', 'snake', 'dog', 'cat']) animals.ID = 3 animals.name = 'animals' is_pet = Variable(['yes', 'yes', 'yes', 'maybe', 'yes', 'yes']) is_pet.ID = 4 is_pet.name = 'is_pet' Pr = CPMF(JointVariables(colors, is_pet), JointVariables(sizes, animals)) assert Pr.given('small', 'cat').p('gray', 'yes') == 2 / 2 assert Pr.given('small', 'cat').p('yellow', 'yes') == 0 / 1 assert Pr.given('small', 'cat').p('brown', 'maybe') == 0 / 1 assert Pr.given('small', 'dog').p('yellow', 'yes') == 1 / 1 assert Pr.given('small', 'dog').p('yellow', 'maybe') == 0 / 1 assert Pr.given('small', 'dog').p('silver', 'maybe') == 0 / 1 assert Pr.given('large', 'cat').p('brown', 'yes') == 1 / 1 assert Pr.given('large', 'cat').p('yellow', 'yes') == 0 / 1 assert Pr.given('small', 'snake').p('silver', 'maybe') == 1 / 1 assert Pr.given('small', 'snake').p('silver', 'no') == 0 / 1 assert Pr.given('normal', 'dog').p('white', 'yes') == 1 / 1 assert Pr.given('normal', 'dog').p('silver', 'yes') == 0 / 1 assert Pr.given('normal', 'dog').p('yellow', 'maybe') == 0 / 1 SA = JointVariables(sizes, animals) PrAll = CPMF(JointVariables(colors, is_pet), SA) PrSA = PMF(SA) PrCcSA = CPMF(colors, SA) PrIPcSA = CPMF(is_pet, SA) test_p_all = 0.0 test_p_c = 0.0 test_p_ip = 0.0 for (sa, psa) in PrSA.items(): for (c, pcsa) in PrCcSA.given(sa).items(): test_p_c += pcsa * PrSA.p(sa) for (ip, pipsa) in PrIPcSA.given(sa).items(): pall = PrAll.given(sa).p(c, ip) test_p_all += pall * PrSA.p(sa) test_p_ip += pipsa * PrSA.p(sa) assert almostEqual(1, test_p_all) assert almostEqual(1, test_p_c) assert almostEqual(1, test_p_ip)
def make_pmf(self, variables): variables = sorted(variables) joint_ct = self.root.make_contingency_table(self, variables) pmf = PMF(None) total_count = 1.0 * self.root.count for key, count in joint_ct.items(): pmf.probabilities[key] = count / total_count pmf.variable = JointVariablesIDs(variables) return pmf
def mutual_information( PrXY: PMF, PrX: PMF, PrY: PMF, base=2, ) -> float: logarithm = create_logarithm_function(base) MI = 0.0 for (x, px) in PrX.items(): for (y, py) in PrY.items(): pxy = PrXY.p(x, y) if pxy == 0 or px == 0 or py == 0: continue else: pMI = pxy * logarithm(pxy / (px * py)) MI += pMI return MI
def get_joint_entropy_term(self, *variables): jht_key = self.create_flat_variable_set(*variables) if len(jht_key) == 0: return 0 self.JHT_reads += 1 try: H = self.JHT[jht_key] except KeyError: self.JHT_misses += 1 joint_variables = self.datasetmatrix.get_variables('X', jht_key) pmf = PMF(joint_variables) H = - pmf.expected_value(lambda v, p: math.log(p)) self.JHT[jht_key] = H if self.DoF_calculator.requires_pmfs: self.DoF_calculator.set_context_pmfs(pmf, None, None, None) return H
def assert_pmf_adtree_vs_datasetmatrix(ds, adtree, variables): dm = ds.datasetmatrix if isinstance(variables, int): variables = [variables] calculated_pmf = adtree.make_pmf(variables) calculated_pmf.remove_zeros() variables = dm.get_variables('X', variables) expected_pmf = PMF(variables) assert expected_pmf.probabilities == calculated_pmf.probabilities
def calculate_pmf_for_cmi( X: Variable, Y: Variable, Z: Union[Variable, JointVariables], ) -> tuple[CPMF, CPMF, CPMF, PMF]: PrXYcZ = CPMF(JointVariables(X, Y), Z) PrXcZ = CPMF(X, Z) PrYcZ = CPMF(Y, Z) PrZ = PMF(Z) return (PrXYcZ, PrXcZ, PrYcZ, PrZ)
def test_pmf_remove_from_key() -> None: pmf = PMF(None) assert pmf.remove_from_key(('A', 'B', 'C', 'D'), 2) == ('A', 'B', 'D') assert pmf.remove_from_key(('A', 'B', 'C', 'D'), 0) == ('B', 'C', 'D') assert pmf.remove_from_key(('A', 'B', 'C', 'D'), 3) == ('A', 'B', 'C') assert pmf.remove_from_key(('A', 'B'), 0) == ('B',) assert pmf.remove_from_key(('A', 'B'), 1) == ('A',) assert pmf.remove_from_key(('A',), 0) == tuple()
def test_pmf_expected_values(): animals = Variable(['cat', 'dog', 'cat', 'mouse', 'dog', 'cat', 'cat', 'dog']) PrAnimals = PMF(animals) assert almostEqual(1.0, PrAnimals.expected_value(lambda v, p: 1)) # Test calculations of base-e entropy and base-2 entropy. assert almostEqual(0.97431475, (-1) * PrAnimals.expected_value(lambda v, p: math.log(p))) assert almostEqual(1.40563906, (-1) * PrAnimals.expected_value(lambda v, p: math.log2(p))) # Expected word length. assert PrAnimals.expected_value(lambda v, p: len(v)) == 3.25
def test_make_cpmf_PrXcZ_variant_1() -> None: V0 = Variable([0, 1, 1, 1, 0, 1, 0, 1]) V1 = Variable([0, 0, 1, 1, 0, 1, 1, 1]) PrXZ = PMF(JointVariables(V0, V1)) PrXZ.IDs(1000, 1111) assert PrXZ.IDs() == (1000, 1111) assert PrXZ.p((0, 0)) == 2 / 8 assert PrXZ.p((0, 1)) == 1 / 8 assert PrXZ.p((1, 0)) == 1 / 8 assert PrXZ.p((1, 1)) == 4 / 8
def conditional_mutual_information( PrXYcZ: CPMF, PrXcZ: CPMF, PrYcZ: CPMF, PrZ: PMF, base: Union[float, str] = 2, ) -> float: logarithm = create_logarithm_function(base) cMI = 0.0 for (z, pz) in PrZ.items(): for (x, pxcz) in PrXcZ.given(z).items(): for (y, pycz) in PrYcZ.given(z).items(): pxycz = PrXYcZ.given(z).p(x, y) if pxycz == 0 or pxcz == 0 or pycz == 0: continue else: pcMI = pz * pxycz * logarithm(pxycz / (pxcz * pycz)) cMI += pcMI return abs(cMI)
def test_single_variable_pmf(): variable = Variable(numpy.array([3, 5, 1, 1, 4, 3, 7, 0, 2, 1, 0, 5, 4, 7, 2, 4])) variable.ID = 1 variable.name = 'test_variable_1' variable.update_values() assert [0, 1, 2, 3, 4, 5, 7] == variable.values PrVariable = PMF(variable) expected_counts = {0: 2, 1: 3, 2: 2, 3: 2, 4: 3, 5: 2, 7: 2} assert PrVariable.value_counts == expected_counts expected_counts = {0: 2 / 16, 1: 3 / 16, 2: 2 / 16, 3: 2 / 16, 4: 3 / 16, 5: 2 / 16, 7: 2 / 16} assert PrVariable.probabilities == expected_counts assert 1 == sum(PrVariable.values()) assert 2 / 16 == PrVariable.p(3) assert 2 / 16 == PrVariable.p(2) assert 2 / 16 == PrVariable.p(5) ev = 0 for (v, pv) in PrVariable.items(): ev += pv * v assert 3.0625 == ev
def test_conditional_pmf__from_bayesian_network(): configuration = dict() configuration['sourcepath'] = testutil.bif_folder / 'survey.bif' configuration['sample_count'] = int(4e4) # Using a random seed of 42 somehow requires 2e6 samples to pass, but # with the seed 1984, it is sufficient to generate only 4e4. Maybe the # random generator is biased somehow? configuration['random_seed'] = 1984 configuration['values_as_indices'] = False configuration['objectives'] = ['R', 'TRN'] bayesian_network = BayesianNetwork.from_bif_file(configuration['sourcepath'], use_cache=False) bayesian_network.finalize() sbnds = SampledBayesianNetworkDatasetSource(configuration) sbnds.reset_random_seed = True datasetmatrix = sbnds.create_dataset_matrix('test_sbnds') assert ['AGE', 'EDU', 'OCC', 'SEX'] == datasetmatrix.column_labels_X assert ['R', 'TRN'] == datasetmatrix.column_labels_Y AGE = Variable(datasetmatrix.get_column_by_label('X', 'AGE')) PrAge = PMF(AGE) SEX = Variable(datasetmatrix.get_column_by_label('X', 'SEX')) PrSex = PMF(SEX) assert_PMF_AlmostEquals_BNProbDist( bayesian_network.variable_nodes['AGE'].probdist, PrAge) assert_PMF_AlmostEquals_BNProbDist( bayesian_network.variable_nodes['SEX'].probdist, PrSex) EDU = Variable(datasetmatrix.get_column_by_label('X', 'EDU')) PrEdu = CPMF(EDU, given=JointVariables(AGE, SEX)) assert_CPMF_AlmostEquals_BNProbDist( bayesian_network.variable_nodes['EDU'].probdist, PrEdu) OCC = Variable(datasetmatrix.get_column_by_label('X', 'OCC')) PrOcc = CPMF(OCC, given=EDU) assert_CPMF_AlmostEquals_BNProbDist( bayesian_network.variable_nodes['OCC'].probdist, PrOcc) R = Variable(datasetmatrix.get_column_by_label('Y', 'R')) PrR = CPMF(R, given=EDU) assert_CPMF_AlmostEquals_BNProbDist( bayesian_network.variable_nodes['R'].probdist, PrR) TRN = Variable(datasetmatrix.get_column_by_label('Y', 'TRN')) PrTRN = CPMF(TRN, given=JointVariables(OCC, R)) assert_CPMF_AlmostEquals_BNProbDist( bayesian_network.variable_nodes['TRN'].probdist, PrTRN)
def G_test_conditionally_independent(self, X: int, Y: int, Z: list[int]) -> CITestResult: (VarX, VarY, VarZ) = self.load_variables(X, Y, Z) result = CITestResult() result.start_timing() PrZ: PMF PrXcZ: CPMF PrYcZ: CPMF PrXYcZ: CPMF if len(Z) == 0: PrXY = PMF(JointVariables(VarX, VarY)) PrX = PMF(VarX) PrY = PMF(VarY) PrZ = OmegaPMF() PrXYcZ = OmegaCPMF(PrXY) PrXcZ = OmegaCPMF(PrX) PrYcZ = OmegaCPMF(PrY) if self.DoF_calculator.requires_pmfs: self.DoF_calculator.set_context_pmfs(PrXY, PrX, PrY, None) else: PrXYZ = PMF(JointVariables(VarX, VarY, VarZ)) PrXZ = PMF(JointVariables(VarX, VarZ)) PrYZ = PMF(JointVariables(VarY, VarZ)) PrZ = PMF(VarZ) PrXcZ = PrXZ.condition_on(PrZ) PrYcZ = PrYZ.condition_on(PrZ) PrXYcZ = PrXYZ.condition_on(PrZ) if self.DoF_calculator.requires_pmfs: self.DoF_calculator.set_context_pmfs(PrXYZ, PrXZ, PrYZ, PrZ) self.DoF_calculator.set_context_variables(X, Y, Z) if self.DoF_calculator.requires_cpmfs: self.DoF_calculator.set_context_cpmfs(PrXYcZ, PrXcZ, PrYcZ, PrZ) DoF = self.DoF_calculator.calculate_DoF(X, Y, Z) if not self.sufficient_samples(DoF): result.end_timing() result.index = self.ci_test_counter + 1 result.set_insufficient_samples() result.set_variables(VarX, VarY, VarZ) result.extra_info = ' DoF {}'.format(DoF) return result G = self.G_value(PrXYcZ, PrXcZ, PrYcZ, PrZ) p = chi2.cdf(G, DoF) independent = None if p < self.significance: independent = True else: independent = False result.end_timing() result.index = self.ci_test_counter + 1 result.set_independent(independent, self.significance) result.set_variables(VarX, VarY, VarZ) result.set_statistic('G', G, dict()) result.set_distribution('chi2', p, {'DoF': DoF}) result.extra_info = ' DoF {}'.format(DoF) return result
def make_pmfs_from_datasetmatrix(self, X: int, Y: int, Zl: list[int]) -> tuple[CPMF, CPMF, CPMF, PMF]: PrZ: PMF PrXcZ: CPMF PrYcZ: CPMF PrXYcZ: CPMF (VarX, VarY, VarZ) = self.load_variables(X, Y, Zl) if len(Zl) == 0: PrXY = PMF(JointVariables(VarX, VarY)) PrX = PMF(VarX) PrY = PMF(VarY) PrZ = OmegaPMF() PrXYcZ = OmegaCPMF(PrXY) PrXcZ = OmegaCPMF(PrX) PrYcZ = OmegaCPMF(PrY) else: PrXYZ = PMF(JointVariables(VarX, VarY, VarZ)) PrXZ = PMF(JointVariables(VarX, VarZ)) PrYZ = PMF(JointVariables(VarY, VarZ)) PrZ = PMF(VarZ) PrXcZ = PrXZ.condition_on(PrZ) PrYcZ = PrYZ.condition_on(PrZ) PrXYcZ = PrXYZ.condition_on(PrZ) return (PrXYcZ, PrXcZ, PrYcZ, PrZ)
def test_pmf_summing_over_variable(): V0 = Variable([0, 1, 1, 1, 0, 1, 0, 1]) V1 = Variable([0, 0, 1, 1, 0, 1, 1, 1]) V2 = Variable([0, 0, 0, 0, 1, 0, 1, 1]) V3 = Variable([0, 0, 0, 0, 0, 0, 1, 1]) V0.ID = 1000 V1.ID = 1111 V2.ID = 1222 V3.ID = 1333 Pr = PMF(JointVariables(V0, V1, V2, V3)) assert Pr.IDs() == (1000, 1111, 1222, 1333) assert Pr.p((0, 0, 0, 0)) == 1 / 8 assert Pr.p((1, 0, 0, 0)) == 1 / 8 assert Pr.p((1, 1, 0, 0)) == 3 / 8 assert Pr.p((0, 0, 1, 0)) == 1 / 8 assert Pr.p((0, 1, 1, 1)) == 1 / 8 assert Pr.p((1, 1, 1, 1)) == 1 / 8 Pr = Pr.sum_over(V2.ID) assert sum(Pr.probabilities.values()) == 1 assert Pr.p((0, 0, 0)) == 2 / 8 assert Pr.p((1, 0, 0)) == 1 / 8 assert Pr.p((1, 1, 0)) == 3 / 8 assert Pr.p((0, 1, 1)) == 1 / 8 assert Pr.p((1, 1, 1)) == 1 / 8 assert Pr.IDs() == (V0.ID, V1.ID, V3.ID) Pr = Pr.sum_over(V1.ID) assert sum(Pr.probabilities.values()) == 1 assert Pr.p((0, 0)) == 2 / 8 assert Pr.p((1, 0)) == 4 / 8 assert Pr.p((0, 1)) == 1 / 8 assert Pr.p((1, 1)) == 1 / 8 assert Pr.IDs() == (V0.ID, V3.ID) Pr = Pr.sum_over(V0.ID) assert sum(Pr.probabilities.values()) == 1 print(Pr.probabilities) assert Pr.p(0) == 6 / 8 assert Pr.p(1) == 2 / 8 assert Pr.IDs() == (V3.ID,)
def create_joint_pmf(self, values_as_indices=True) -> PMF: pmf = PMF(None) pmf.probabilities = self.joint_values_and_probabilities( values_as_indices=values_as_indices) pmf.IDs(*self.variable_IDs) return pmf
def calculate_pmf_for_mi(X: Variable, Y: Variable) -> tuple[PMF, PMF, PMF]: PrXY = PMF(JointVariables(X, Y)) PrX = PMF(X) PrY = PMF(Y) return (PrXY, PrX, PrY)