def process_sentences(usr, rcts_impo, no_cache): no_cache = True purps = get_aliases_p(rcts_impo) print 'Purps:', purps print 'NO_cache:', no_cache if no_cache: for pur_p in purps: print 'Collect ractionlines for(1):', pur_p, '-----' ractionlines = mdOntology.mdAbstractBaseOntology() ractionlines.nodesER = rcts_impo print 'Found:', len( ractionlines.nodesER), '-> Ready to start inference-engine:' #=============== process_termo(rcts_impo, usr, pur_p, ractionlines)
def process_sentences(usr,rcts_impo): # purps=get_aliases_p( rcts_impo ) print 'Purps:',purps for pur_p in purps: aliases=get_aliases_ob () layers=[] layers2=[] layers=get_ontology(aliases,pur_p,usr) nms=[] for dks in layers: for dk1 in dks: for dk in dk1: nms.append(dk.name) print 'GetLayers:(',aliases,',',pur_p,')->',(layers),'{',nms,'}' #=============== #======== load ractionlines baseado no cenario escolhido => parametro de linha de comando purpose print 'Collect ractionlines for(1):',pur_p,'-----' ractionlines=mdOntology.mdAbstractBaseOntology () ractionlines.nodesER=rcts_impo print 'Found:',len(ractionlines.nodesER),'-> Ready to start inference-engine:' #=============== print 'OBJS:',aliases,' Result:',layers if len(layers)>0: print 'Start process of rct:-------------------------' # doc print 'Process layers:',len(layers) for doc in layers: #sente print 'Process doc:',len(doc) for sentece in doc: #lines print 'Process Sentence:',len(sentece) ids=0 try: for s in sentece: ids+=1 #print s.name,'---',ids print 'AK-sentence:[',sentece,']' process_termo(sentece,usr,pur_p,ractionlines) except Exception,ess1: print 'Error process termo:',ess1 log.exception( '===========================' ) else: process_termo([],usr,pur_p,ractionlines) #=============== '''
def process_sentences(usr, rcts_impo): purps = ret_usr_inter(usr) for pur_p in purps: aliases = get_aliases_ob() layers = [] layers = get_ontology(aliases, pur_p, usr) print 'GetLayers:(', aliases, ',', pur_p, ')->', len(layers) layers2 = get_ontology2(aliases, pur_p, usr) print 'GetLayers2:(', aliases, ',', pur_p, ')->', len(layers2) #=============== #======== load ractionlines baseado no cenario escolhido => parametro de linha de comando purpose print 'Collect ractionlines for(1):', pur_p, '-----' ractionlines = mdOntology.mdAbstractBaseOntology() ractionlines.nodesER = rcts_impo print 'Found:', len( ractionlines.nodesER), '-> Ready to start inference-engine:' #=============== print 'OBJS:', aliases, ' Result:', layers if len(layers) > 0: print 'Start process of rct:-------------------------' # doc print 'Process layers:', len(layers) for doc in layers: #sente print 'Process doc:', len(doc) for sentece in doc: #lines print 'Process Sentence:', len(sentece) ids = 0 try: for s in sentece: ids += 1 #print s.name,'---',ids process_termo(sentece, usr, pur_p, ractionlines) except Exception, ess1: print 'Error process termo:', ess1 #=============== print 'OBJS Rels:', aliases, ' Result:', layers2 if len(layers2) > 0: print 'Start process of rct:-------------------------' # doc for doc in layers2: #sente for sentece in doc: #lines process_termo(sentece, usr, pur_p, ractionlines, True)
def process_sentences2(usr,rcts_impo,layers_param): #purps=ret_usr_inter(usr) purps=get_aliases_p( rcts_impo ) print 'Purps:',purps for pur_p in purps: aliases=get_aliases_ob () layers=[] layers2=[] #======== load ractionlines baseado no cenario escolhido => parametro de linha de comando purpose print 'Collect ractionlines for(1):',pur_p,'-----' ractionlines=mdOntology.mdAbstractBaseOntology () ractionlines.nodesER=rcts_impo print 'Found:',len(ractionlines.nodesER),'-> Ready to start inference-engine:' #=============== print 'OBJS:',aliases,' Result:',layers if True : try: process_termo(layers_param,usr,pur_p,ractionlines) except Exception,ess1: log.exception( '===========================' ) print 'Error process termo:',ess1