예제 #1
0
def main(argv):
    parser = MdpArgs(
        description=
        "extract mean CO2 emissions at intervals of following MDP instance optimal policy"
    )
    parser.add_paramsfile_single()
    parser.add_cycle_length()
    parser.add_iterations(default=500)
    parser.add_save()
    args = parser.get_args()

    if not args.paramsfile:
        print("error: must pass in paramsfile.")
        sys.exit(2)

    params = cl.get_params_single(MDP_VERSION, args.paramsfile)
    mdp_model = cl.get_mdp_model(MDP_VERSION, [params])
    mdp_fh = cl.get_mdp_instance_single(mdp_model, params)

    t_range = [0, mdp_fh.n_years]

    _, _, y_emit, _ = mv.avg_co2_probabilistic_v(mdp_fh, t_range[0],
                                                 t_range[1], args.iterations,
                                                 True)
    y_emit = np.sum(y_emit, axis=0) / args.iterations

    for y in args.cycle:
        targets_mean, targets_dec = (dict() for i in range(2))
        emit_dec = calc_emit_dec(mdp_fh, y_emit, y)

        years_sampled = [i * y for i in range(0, (mdp_fh.n_years // y))]
        # Sampled from mean of optimal policy.
        targets_mean['x'] = years_sampled
        targets_mean['y'] = [y_emit[i] for i in years_sampled]
        # Decrement evenly to align with optimal policy.
        targets_dec['x'] = years_sampled
        targets_dec['y'] = [
            y_emit[0] - i * emit_dec for i in range(mdp_fh.n_years // y)
        ]

        targets_dir = Path("visuals/v{}/targets".format(DIR_VERSION))
        name = args.paramsfile.replace("_exp", "").replace("_lin", "")

        tf_mean = targets_dir / "e_v{}_{}_{}_mean.txt".format(
            DIR_VERSION, y, name)
        with open(tf_mean, 'w+') as targetsfile:
            targetsfile.write(str(targets_mean))

        tf_dec = targets_dir / "e_v{}_{}_{}_dec.txt".format(
            DIR_VERSION, y, name)
        with open(tf_dec, 'w+') as targetsfile:
            targetsfile.write(str(targets_dec))
        targetsfile.close()
예제 #2
0
def main(argv):
    parser = argparse.ArgumentParser(description="plot costs of following MDP instance optimal policy")
    parser.add_argument("-m", "--version", help="MDP model version", type=int)
    parser.add_argument("-p", "--paramsfiles", help="list of txt files with version specific params as dict", nargs='*', action='store')
    parser.add_argument("-t", "--timerange", help="see specific time range", nargs=2, type=int, default=None)
    parser.add_argument("-i", "--iterations", help="number of simulations of tech stage transition", type=int, default=200)
    parser.add_argument("-e", "--CO2", help="limit on annual CO2 emissions", type=int, default=0)
    parser.add_argument("-r", "--RES", help="target RES penetration", type=int, default=0)
    parser.add_argument("--save", help="save plots as png files", action='store_true')
    args = parser.parse_args()

    if int(args.version) < 2:
        print("error: plot_compare_co2_res only supported for MDP V2 or higher.")
        sys.exit(1)

    if len(args.paramsfiles) == 0:
        print("error: plot_compare_co2_res requires at least one parameters file.")
        sys.exit(2)

    params_co2_res = []
    for paramsfile in args.paramsfiles:
        params_dir = Path("results/v{}/params".format(args.version))
        pf = params_dir / "p_v{}_{}.txt".format(args.version, paramsfile)
        with open(pf, 'r') as paramsfile:
            params = eval(paramsfile.read())
        paramsfile.close()
        params_co2_res.append(params)
    param_names = [mv.format_param_names(pf) for pf in args.paramsfiles]

    mdp_model = None
    if int(args.version) == 2:
        mdp_model = MdpModelV2()
        p_adv_vary = False
    elif int(args.version) == 3:
        mdp_model = MdpModelV3()
        p_adv_vary = True
    elif int(args.version) == 4:
        mdp_model = MdpModelV4()
        p_adv_vary = True

    assert(mdp_model is not None)
    assert(mdp_model.param_names == list(params.keys()))

    mdp_fh_co2_res = []
    for params in params_co2_res:
        mdp_fh = mdp_model.run_fh(params)
        mdp_fh_co2_res.append(mdp_fh)

    if args.timerange:
        t0, tN = args.timerange
        t0 = max(0, t0-1)
        if tN - t0 > mdp_fh.n_years:
            print("error: time range {}-{} out of range: {}".format(t0, tN, mdp_fh.n_tech_stages))
            sys.exit(3)
    else:
        t0 = 0
        tN = mdp_fh_co2_res[0].n_years

    np.set_printoptions(linewidth=300)
    visuals_dir = Path("visuals/v{}/plots".format(args.version))

    fig_co2_emit = mv.opt_policy_co2_emit(mdp_fh_co2_res, [t0, tN], args.iterations, param_names, CO2=args.CO2, p_adv_vary=p_adv_vary)
    fig_res = mv.opt_policy_res_percent(mdp_fh_co2_res, [t0, tN], args.iterations, param_names, RES=args.RES, p_adv_vary=p_adv_vary)

    if args.save:
        fig_co2_emit.savefig(visuals_dir / "g_v{}_compare_co2_emit_ann{}.png".format(args.version, paramsfile))
        fig_res.savefig(visuals_dir / "g_v{}_compare_res_ann{}.png".format(args.version, paramsfile))
    plt.show()
예제 #3
0
def main(argv):
    parser = argparse.ArgumentParser(description="plot costs of following MDP instance optimal policy")
    parser.add_argument("-m", "--version", help="MDP model version", type=int)
    parser.add_argument("-p", "--paramsfile", help="txt file with version specific params dict")
    parser.add_argument("-c", "--component", help="see single cost component")
    parser.add_argument("-a", "--policy", help="txt file with policy as list", default=None)
    parser.add_argument("-t", "--timerange", help="see specific time range", nargs=2, type=int, default=None)
    parser.add_argument("-v", "--techstage", help="see single tech stage", type=int, default=None)
    parser.add_argument("--save", help="save plots as png files", action='store_true')
    args = parser.parse_args()

    if int(args.version) < 2:
        print("error: plot_cost_component only supported for MDP V2 or higher.")
        sys.exit(1)

    params_dir = Path("results/v{}/params".format(args.version))
    pf = params_dir / "p_v{}_{}.txt".format(args.version, args.paramsfile)
    with open(pf, 'r') as paramsfile:
        params = eval(paramsfile.read())
    paramsfile.close()

    mdp_model = None
    if int(args.version) == 2:
        mdp_model = MdpModelV2()
    elif int(args.version) == 3:
        mdp_model = MdpModelV3()
    elif int(args.version) == 4:
        mdp_model = MdpModelV4()

    assert(mdp_model is not None)
    assert(mdp_model.param_names == list(params.keys()))
    mdp_fh = mdp_model.run_fh(params)

    if args.techstage is not None:
        if args.techstage < 0 or args.techstage >= mdp_fh.n_tech_stages:
            print("error: tech stage {} out of range: {}".format(args.techstage, mdp_fh.n_tech_stages))
            sys.exit(2)

    if args.policy:
        policies_dir = Path("visuals/v{}/policies".format(args.version))
        af = policies_dir / "a_v{}_{}.txt".format(args.version, args.policy)
        with open(af, 'r') as policyfile:
            arb_policy = eval(policyfile.read())
        policyfile.close()
        assert(len(arb_policy) == mdp_fh.n_years)
        policy_type = args.policy
    else:
        policy_type = "optimal"

    if args.techstage is not None:
        if args.policy:
            policy = mv.get_arb_policy_trajectory(arb_policy, args.techstage)
        else:
            policy = mv.get_opt_policy_trajectory(mdp_fh, args.techstage)
        v_str = str(args.techstage)
    else:
        policy = []
        for v in np.arange(mdp_fh.n_tech_stages):
            if args.policy:
                policy.append(mv.get_arb_policy_trajectory(arb_policy, v))
            else:
                policy.append(mv.get_opt_policy_trajectory(mdp_fh, v))
        v_str = "all"

    if args.timerange:
        t0, tN = args.timerange
        t0 = max(0, t0-1)
        if tN - t0 > mdp_fh.n_years:
            print("error: time range {}-{} out of range: {}".format(t0, tN, mdp_fh.n_tech_stages))
            sys.exit(3)
    else:
        t0 = 0
        tN = mdp_fh.n_years

    np.set_printoptions(linewidth=300)
    visuals_dir = Path("visuals/v{}/plots".format(args.version))

    fig_component = mv.cost_by_component_wrapper(mdp_fh, policy, policy_type, args.component, [t0, tN], v=args.techstage)

    if args.save:
        fig_component.savefig(visuals_dir / "g_v{}_{}_{}_{}.png".format(args.version, policy_type, args.component, paramsfile, v_str))
    plt.show()
예제 #4
0
def main(argv):
    parser = MdpArgs(description="plot tax adjusted vs. non-adjusted targets of following optimal MDP policy")
    parser.add_model_version()
    parser.add_paramsfile_multiple()
    parser.add_time_range()
    parser.add_iterations()
    parser.add_confidence_interval()
    parser.add_use_data()
    parser.add_save()
    args = parser.get_args()

    if not parser.check_version(4, 4, "visualize_adjust only supported for MDP V3 with MDP V4 or higher."):
        sys.exit(1)

    if not parser.check_paramfile_multiple():
        sys.exit(2)

    paramsfiles3 = []
    paramsfiles4 = []
    for i in range(0, len(args.paramsfiles)):
        if i % 2:
            paramsfiles4.append(args.paramsfiles[i])
        else:
            paramsfiles3.append(args.paramsfiles[i])

    # MDP V3.
    params3_all = cl.get_params_multiple(COMP_VERSION, paramsfiles3)
    mdp_model3 = cl.get_mdp_model(COMP_VERSION, params3_all)
    mdp_fh3_all = cl.get_mdp_instance_multiple(mdp_model3, params3_all)
    # MDP V4.
    params4_all = cl.get_params_multiple(args.version, paramsfiles4)
    mdp_model4 = cl.get_mdp_model(args.version, params4_all)

    t_range = cl.get_time_range(args, params4_all[0])
    if not t_range:
        sys.exit(3)

    mdp_data = MdpDataGatherer(mdp_model4, args.iterations, t_range)
    if args.confidenceinterval:
        mdp_data.set_ci(ci_type=args.confidenceinterval)

    x = mdp_data.get_time_range(t_range)

    y_res3, y_emit3, y_tax3 = ([] for i in range(3))
    for mdp_fh3 in mdp_fh3_all:
        _, res, emit, tax = mv.avg_co2_probabilistic_v(mdp_fh3, t_range[0], t_range[1],
                                                       args.iterations, True, res_percent=True)
        y_res3.append(mdp_data.convert_to_percent(mdp_data.calc_data_bounds(res)))
        y_emit3.append(mdp_data.calc_data_bounds(emit))
        y_tax3.append(mdp_data.calc_data_bounds(tax))

    y_res4, y_emit4, y_tax4 = ([] for i in range(3))
    if args.usedata:
        for pf in paramsfiles4:
            data = cl.get_mdp_data(args.version, pf)
            y_res4.append(mdp_data.convert_to_percent(mdp_data.get_data_component(data, 'res_penetration')))
            y_emit4.append(mdp_data.get_data_component(data, 'co2_emissions'))
            y_tax4.append(mdp_data.get_data_component(data, 'co2_tax'))
    else:
        mdp_fh_all = cl.get_mdp_instance_multiple(mdp_model4, params4_all)
        for mdp_fh4 in mdp_fh_all:
            y_res4.append(mdp_data.convert_to_percent(mdp_data.calc_data_bounds(mdp_data.res_penetration(mdp_fh4))))
            y_emit4.append(mdp_data.calc_data_bounds(mdp_data.co2_emissions(mdp_fh4)))
            y_tax4.append(mdp_data.calc_data_bounds(mdp_data.co2_tax_collected(mdp_fh4)))

    params3_names = paramsfiles3 
    params4_names = paramsfiles4
    colors = None 

    figs_compare = []
    mdp_plot = MdpPlotter()
    # RES penetration
    mdp_plot.initialize("RES Penetration", "Time (years)", "RES Penetration (%)")
    mdp_plot.plot_lines(x, y_res3, params3_names, y_max=100, colors=colors, CI=args.confidenceinterval)
    mdp_plot.plot_lines(x, y_res4, params4_names, y_max=100, colors=colors, CI=args.confidenceinterval, linestyle='dashed')
    fig = mdp_plot.finalize()
    figs_compare.append(fig)
    # CO2 emissions
    mdp_plot.initialize("Annual CO2 Emissions", "Time (years)", "CO2 (million ton/yr)")
    mdp_plot.plot_lines(x, y_emit3, params3_names, scale=1e6, colors=colors, CI=args.confidenceinterval)
    mdp_plot.plot_lines(x, y_emit4, params4_names, scale=1e6, colors=colors, CI=args.confidenceinterval, linestyle='dashed')
    fig = mdp_plot.finalize()
    figs_compare.append(fig)
    # CO2 tax collected
    mdp_plot.initialize("Annual CO2 Tax Collected", "Time (years)", "Cost (million USD/yr)")
    mdp_plot.plot_lines(x, y_tax3, params3_names, scale=1e6, colors=colors, CI=args.confidenceinterval)
    mdp_plot.plot_lines(x, y_tax4, params4_names, scale=1e6, colors=colors, CI=args.confidenceinterval, linestyle='dashed')
    fig = mdp_plot.finalize()
    figs_compare.append(fig)

    names = ['res', 'emit', 'target']
    visuals_dir = Path("visuals/v{}/plots".format(args.version))
    if args.save:
        for fig, name in zip(figs_compare, names):
            fig.savefig(visuals_dir / "g_v{}_compare_{}.png".format(args.version, name))
    plt.show()
예제 #5
0
def main(argv):
    parser = MdpArgs(
        description=
        "plot tax adjusted vs. non-adjusted targets of following optimal MDP policy"
    )
    parser.add_model_version()
    parser.add_paramsfile_multiple()
    parser.add_targetsfile()
    parser.add_time_range()
    parser.add_iterations()
    parser.add_confidence_interval()
    parser.add_use_data()
    parser.add_save()
    args = parser.get_args()

    if not parser.check_version(
            4, 4,
            "visualize_adjust only supported for MDP V3 with MDP V4 or higher."
    ):
        sys.exit(1)

    if not parser.check_paramfile_multiple():
        sys.exit(2)

    # MDP V3.
    params3 = cl.get_params_single(COMP_VERSION, args.paramsfiles[0])
    mdp_model3 = cl.get_mdp_model(COMP_VERSION, [params3])
    mdp_fh3 = cl.get_mdp_instance_single(mdp_model3, params3)
    # MDP V4.
    params4_all = cl.get_params_multiple(args.version, args.paramsfiles[1:])
    mdp_model4 = cl.get_mdp_model(args.version, params4_all)

    t_range = cl.get_time_range(args, params4_all[0])
    if not t_range:
        sys.exit(3)

    mdp_data = MdpDataGatherer(mdp_model4, args.iterations, t_range)
    if args.confidenceinterval:
        mdp_data.set_ci(ci_type=args.confidenceinterval)

    x = mdp_data.get_time_range(t_range)

    _, y_res3, y_emit3, y_tax3 = mv.avg_co2_probabilistic_v(mdp_fh3,
                                                            t_range[0],
                                                            t_range[1],
                                                            args.iterations,
                                                            True,
                                                            res_percent=True)
    y_res3 = mdp_data.convert_to_percent(mdp_data.calc_data_bounds(y_res3))
    y_emit3 = mdp_data.calc_data_bounds(y_emit3)
    y_tax3 = mdp_data.calc_data_bounds(y_tax3)

    y_res4, y_emit4, y_tax4 = ([] for i in range(3))
    if args.usedata:
        for pf in args.paramsfiles[1:]:
            data = cl.get_mdp_data(args.version, pf)
            y_res4.append(
                mdp_data.convert_to_percent(
                    mdp_data.get_data_component(data, 'res_penetration')))
            y_emit4.append(mdp_data.get_data_component(data, 'co2_emissions'))
            y_tax4.append(mdp_data.get_data_component(data, 'co2_tax'))
    else:
        mdp_fh_all = cl.get_mdp_instance_multiple(mdp_model4, params4_all)
        for mdp_fh4 in mdp_fh_all:
            y_res4.append(
                mdp_data.convert_to_percent(
                    mdp_data.calc_data_bounds(
                        mdp_data.res_penetration(mdp_fh4))))
            y_emit4.append(
                mdp_data.calc_data_bounds(mdp_data.co2_emissions(mdp_fh4)))
            y_tax4.append(
                mdp_data.calc_data_bounds(mdp_data.co2_tax_collected(mdp_fh4)))

    y_res = [y_res3] + y_res4
    y_emit = [y_emit3] + y_emit4
    y_tax = [y_tax3] + y_tax4

    if args.targetsfile:
        targets = cl.get_emissions_target(args.version, args.targetsfile)
        targets['x'] = [x + START_YEAR for x in targets['x']]
        targets['x'] = targets['x'][0:7]
        targets['y'] = targets['y'][0:7]
    else:
        targets = None

    # params_names = args.paramsfiles
    params_names = ["{}: static".format(args.paramsfiles[0])] + [
        "{}: adjusted".format(pf) for pf in args.paramsfiles[1:]
    ]
    colors = None

    figs_compare = []
    mdp_plot = MdpPlotter()
    # RES penetration
    mdp_plot.initialize("RES Penetration", "Time (years)",
                        "RES Penetration (%)")
    mdp_plot.plot_lines(x,
                        y_res,
                        params_names,
                        y_max=100,
                        colors=colors,
                        CI=args.confidenceinterval)
    fig = mdp_plot.finalize()
    figs_compare.append(fig)
    # CO2 emissions
    mdp_plot.initialize("Annual CO2 Emissions", "Time (years)",
                        "CO2 (million ton/yr)")
    mdp_plot.plot_lines(x,
                        y_emit,
                        params_names,
                        scale=1e6,
                        colors=colors,
                        CI=args.confidenceinterval)
    if targets:
        mdp_plot.add_scatter_points(targets['x'],
                                    targets['y'],
                                    "Emissions target",
                                    scale=1e6,
                                    marker='o')
    fig = mdp_plot.finalize()
    figs_compare.append(fig)
    # CO2 tax collected
    mdp_plot.initialize("Annual CO2 Tax Collected", "Time (years)",
                        "Cost (billion USD/yr)")
    mdp_plot.plot_lines(x,
                        y_tax,
                        params_names,
                        scale=1e9,
                        colors=colors,
                        CI=args.confidenceinterval)
    fig = mdp_plot.finalize()
    figs_compare.append(fig)

    names = ['res', 'emit', 'target']
    visuals_dir = Path("visuals/v{}/plots".format(args.version))
    if args.save:
        for fig, name in zip(figs_compare, names):
            fig.savefig(visuals_dir /
                        "g_v{}_compare_{}.png".format(args.version, name))
    plt.show()
예제 #6
0
def main(argv):
    parser = argparse.ArgumentParser(
        description="plot costs of following MDP instance optimal policy")
    parser.add_argument("-m", "--version", help="MDP model version", type=int)
    parser.add_argument("-p",
                        "--paramsfile",
                        help="txt file with version specific params as dict")
    parser.add_argument(
        "-a",
        "--policies",
        help="keyword opt and/or txt files with policy as list",
        nargs='*',
        action='store')
    parser.add_argument("-v",
                        "--techstage",
                        help="see single tech stage",
                        type=int,
                        default=None)
    parser.add_argument("-t",
                        "--timerange",
                        help="see specific time range",
                        nargs=2,
                        type=int,
                        default=None)
    parser.add_argument("--granular",
                        help="more granular cost component breakdown",
                        action='store_true')
    parser.add_argument("--save",
                        help="save plots as png files",
                        action='store_true')
    args = parser.parse_args()

    if int(args.version) < 2:
        print(
            "error: plot_double_policy_costs only supported for MDP V2 or higher."
        )
        sys.exit(1)

    if args.policies is not None and len(args.policies) not in (1, 2):
        print(
            "error: plot_double_policy_costs takes 2 arbitrary policies or 1 arbitrary and the optimal policy."
        )
        sys.exit(1)

    params_dir = Path("results/v{}/params".format(args.version))
    pf = params_dir / "p_v{}_{}.txt".format(args.version, args.paramsfile)
    with open(pf, 'r') as paramsfile:
        params = eval(paramsfile.read())
    paramsfile.close()

    mdp_model = None
    if int(args.version) == 2:
        mdp_model = MdpModelV2()
    elif int(args.version) == 3:
        mdp_model = MdpModelV3()
    elif int(args.version) == 4:
        mdp_model = MdpModelV4()

    assert (mdp_model is not None)
    assert (mdp_model.param_names == list(params.keys()))
    mdp_fh = mdp_model.run_fh(params)

    if args.techstage:
        if args.techstage < 0 or args.techstage >= mdp_fh.n_tech_stages:
            print("error: tech stage {} out of range: {}".format(
                args.techstage, mdp_fh.n_tech_stages))
            sys.exit(2)

    pol_strs = args.policies
    two_pols = []
    for pol_str in pol_strs:
        policies_dir = Path("visuals/v{}/policies".format(args.version))
        af = policies_dir / "a_v{}_{}.txt".format(args.version, pol_str)
        with open(af, 'r') as policyfile:
            arb_policy = eval(policyfile.read())
            two_pols.append(arb_policy)
        policyfile.close()
        assert (len(arb_policy) == mdp_fh.n_years)

    if args.techstage is not None:
        double_policy = [
            mv.get_arb_policy_trajectory(pol, args.techstage)
            for pol in two_pols
        ]
        if len(two_pols) == 1:
            double_policy.insert(
                0, mv.get_opt_policy_trajectory(mdp_fh, args.techstage))
        v_str = str(args.techstage)
    else:
        double_policy = []
        if len(two_pols) == 1:
            double_policy.append([
                mv.get_opt_policy_trajectory(mdp_fh, v)
                for v in np.arange(mdp_fh.n_tech_stages)
            ])
            double_policy.append([
                mv.get_arb_policy_trajectory(two_pols[0], v)
                for v in np.arange(mdp_fh.n_tech_stages)
            ])
        else:
            for i in [0, 1]:
                double_policy.append([
                    mv.get_arb_policy_trajectory(two_pols[i], v)
                    for v in np.arange(mdp_fh.n_tech_stages)
                ])
        v_str = "all"

    if len(pol_strs) == 1:
        pol_strs.insert(0, "optimal")
    policy_type = "{}_VS_{}".format(pol_strs[0], pol_strs[1])

    if args.timerange:
        t0, tN = args.timerange
        t0 = max(0, t0 - 1)
        if tN - t0 > mdp_fh.n_years:
            print("error: time range {}-{} out of range: {}".format(
                t0, tN, mdp_fh.n_tech_stages))
            sys.exit(3)
    else:
        t0 = 0
        tN = mdp_fh.n_years

    if args.granular:
        components = COMPONENTS_GRANULAR
    else:
        components = COMPONENTS

    np.set_printoptions(linewidth=300)
    visuals_dir = Path("visuals/v{}/plots".format(args.version))

    fig_breakdown = mv.total_cost_wrapper(mdp_fh,
                                          double_policy,
                                          policy_type, [t0, tN],
                                          v=args.techstage)
    fig_percents = mv.cost_breakdown_wrapper(mdp_fh,
                                             double_policy,
                                             policy_type,
                                             components, [t0, tN],
                                             v=args.techstage)
    fig_total = mv.cost_breakdown_wrapper(mdp_fh,
                                          double_policy,
                                          policy_type,
                                          components, [t0, tN],
                                          v=args.techstage,
                                          percent=True)

    if args.save:
        fig_breakdown.savefig(
            visuals_dir / "g_v{}_{}_breakdown_{}_{}.png".format(
                args.version, policy_type, paramsfile, v_str))
        fig_percents.savefig(visuals_dir /
                             "g_v{}_{}_percents_{}_{}.png".format(
                                 args.version, policy_type, paramsfile, v_str))
        fig_total.savefig(visuals_dir / "g_v{}_{}_total_{}_{}.png".format(
            args.version, policy_type, paramsfile, v_str))
    plt.show()
예제 #7
0
def main(argv):
    parser = argparse.ArgumentParser(
        description="plot costs of following MDP instance optimal policy")
    parser.add_argument("-m", "--version", help="MDP model version", type=int)
    parser.add_argument("-p",
                        "--paramsfile",
                        help="txt file with version specific params as dict")
    parser.add_argument("-t",
                        "--timerange",
                        help="see specific time range",
                        nargs=2,
                        type=int,
                        default=None)
    parser.add_argument("-i",
                        "--iterations",
                        help="number of simulations of tech stage transition",
                        type=int,
                        default=200)
    parser.add_argument("--save",
                        help="save plots as png files",
                        action='store_true')
    args = parser.parse_args()

    if int(args.version) < 2:
        print("error: plot_co2_impacts only supported for MDP V2 or higher.")
        sys.exit(1)

    params_dir = Path("results/v{}/params".format(args.version))
    pf = params_dir / "p_v{}_{}.txt".format(args.version, args.paramsfile)
    with open(pf, 'r') as paramsfile:
        params = eval(paramsfile.read())
    paramsfile.close()

    mdp_model = None
    if int(args.version) == 2:
        mdp_model = MdpModelV2()
        p_adv_vary = False
    elif int(args.version) == 3:
        mdp_model = MdpModelV3()
        p_adv_vary = True
    elif int(args.version) == 4:
        mdp_model = MdpModelV4()
        p_adv_vary = True

    assert (mdp_model is not None)
    assert (mdp_model.param_names == list(params.keys()))
    mdp_fh = mdp_model.run_fh(params)

    policy = [
        mv.get_opt_policy_trajectory(mdp_fh, v)
        for v in np.arange(mdp_fh.n_tech_stages)
    ]

    if args.timerange:
        t0, tN = args.timerange
        t0 = max(0, t0 - 1)
        if tN - t0 > mdp_fh.n_years:
            print("error: time range {}-{} out of range: {}".format(
                t0, tN, mdp_fh.n_tech_stages))
            sys.exit(3)
    else:
        t0 = 0
        tN = mdp_fh.n_years

    np.set_printoptions(linewidth=300)
    visuals_dir = Path("visuals/v{}/plots".format(args.version))

    fig_annual = mv.co2_emit_tax_wrapper(mdp_fh,
                                         policy, [t0, tN],
                                         args.iterations,
                                         is_annual=True,
                                         p_adv_vary=p_adv_vary)
    fig_cum = mv.co2_emit_tax_wrapper(mdp_fh,
                                      policy, [t0, tN],
                                      args.iterations,
                                      is_annual=False,
                                      p_adv_vary=p_adv_vary)

    if args.save:
        fig_annual.savefig(
            visuals_dir /
            "g_v{}_co2_emit_tax_ann_{}.png".format(args.version, paramsfile))
        fig_cum.savefig(
            visuals_dir /
            "g_v{}_co2_emit_tax_cum_{}.png".format(args.version, paramsfile))
    plt.show()
예제 #8
0
def main(argv):
    parser = argparse.ArgumentParser(description="plot costs of following MDP instance optimal policy")
    parser.add_argument("-m", "--version", help="MDP model version", type=int)
    parser.add_argument("-p", "--paramsfile", help="txt file with version specific params as dict")
    parser.add_argument("-s", "--reductions", help="fractional reductions in storage capital costs", nargs='+', type=float)
    parser.add_argument("-t", "--timerange", help="see specific time range", nargs=2, type=int, default=None)
    parser.add_argument("-i", "--iterations", help="number of simulations of tech stage transition", type=int, default=200)
    parser.add_argument("-b", "--budget", help="annual budget for renewable plants", type=int, default=0)
    parser.add_argument("-r", "--RES", help="target renewable penetration", type=int, default=0)
    parser.add_argument("--save", help="save plots as png files", action='store_true')
    args = parser.parse_args()

    if int(args.version) < 2:
        print("error: plot_storage_sensitivity only supported for MDP V2 or higher.")
        sys.exit(1)

    params_dir = Path("results/v{}/params".format(args.version))
    pf = params_dir / "p_v{}_{}.txt".format(args.version, args.paramsfile)
    with open(pf, 'r') as paramsfile:
        params = eval(paramsfile.read())
    paramsfile.close()

    params_storage_reduced = []
    for frac in args.reductions:
        params_reduced = mv.reduce_storage_costs_params(params, frac)
        params_storage_reduced.append(params_reduced)

    mdp_model = None
    if int(args.version) == 2:
        mdp_model = MdpModelV2()
        p_adv_vary = False
    elif int(args.version) == 3:
        mdp_model = MdpModelV3()
        p_adv_vary = True
    elif int(args.version) == 4:
        mdp_model = MdpModelV4()
        p_adv_vary = True

    assert(mdp_model is not None)
    assert(mdp_model.param_names == list(params.keys()))

    mdp_fh_storage_reduced = []
    for params in params_storage_reduced:
        mdp_fh = mdp_model.run_fh(params)
        mdp_fh_storage_reduced.append(mdp_fh)

    if args.timerange:
        t0, tN = args.timerange
        t0 = max(0, t0-1)
        if tN - t0 > mdp_fh.n_years:
            print("error: time range {}-{} out of range: {}".format(t0, tN, mdp_fh.n_tech_stages))
            sys.exit(3)
    else:
        t0 = 0
        tN = mdp_fh.n_years

    np.set_printoptions(linewidth=300)
    visuals_dir = Path("visuals/v{}/plots".format(args.version))

    figs_budget, fig_res = mv.storage_reductions_wrapper(mdp_fh_storage_reduced, [t0, tN], args.iterations, args.reductions, budget=args.budget, RES=args.RES, p_adv_vary=p_adv_vary)

    if args.save:
        figs_budget[0].savefig(visuals_dir / "g_v{}_storage_reductions_budget_ann{}.png".format(args.version, paramsfile))
        figs_budget[1].savefig(visuals_dir / "g_v{}_storage_reductions_budget_cum{}.png".format(args.version, paramsfile))
        fig_res.savefig(visuals_dir / "g_v{}_storage_reductions_RESpenetration_{}.png".format(args.version, paramsfile))
    plt.show()