예제 #1
0
def test_average_structure(get_fn):
    traj = md.load(get_fn('frame0.dcd'), top=get_fn('frame0.pdb'))
    average = compute_average_structure(traj.xyz)

    # The mean RMSD to the average structure should be less than to any individual frame.
    sum1 = 0
    sum2 = 0
    for i in range(traj.n_frames):
        sum1 += rmsd_qcp(traj.xyz[0], traj.xyz[i])
        sum2 += rmsd_qcp(average, traj.xyz[i])
    assert sum2 < sum1
예제 #2
0
파일: test_rmsd.py 프로젝트: msultan/mdtraj
def test_average_structure():
    traj = md.load(get_fn('frame0.dcd'), top=get_fn('frame0.pdb'))
    average = compute_average_structure(traj.xyz)
    
    # The mean RMSD to the average structure should be less than to any individual frame.
    sum1 = 0
    sum2 = 0
    for i in range(traj.n_frames):
        sum1 += rmsd_qcp(traj.xyz[0], traj.xyz[i])
        sum2 += rmsd_qcp(average, traj.xyz[i])
    assert sum2 < sum1
예제 #3
0
파일: test_rmsd.py 프로젝트: msultan/mdtraj
def test_trajectory_rmsd():
    t = md.load(get_fn('traj.h5'))
    for parallel in [True, False]:
        calculated = md.rmsd(t, t, 0, parallel=parallel)    
        reference = np.zeros(t.n_frames)
        for i in range(t.n_frames):
            reference[i] = rmsd_qcp(t.xyz[0], t.xyz[i])

        eq(calculated, reference, decimal=3)
예제 #4
0
def test_trajectory_rmsd(get_fn):
    t = md.load(get_fn('traj.h5'))
    for parallel in [True, False]:
        calculated = md.rmsd(t, t, 0, parallel=parallel)
        reference = np.zeros(t.n_frames)
        for i in range(t.n_frames):
            reference[i] = rmsd_qcp(t.xyz[0], t.xyz[i])

        eq(calculated, reference, decimal=3)
예제 #5
0
파일: test_rmsd.py 프로젝트: msultan/mdtraj
def test_precentered_1():
    # test rmsd against the numpy version, using the same trajectory
    # as target and reference
    t1 = md.load(get_fn('traj.h5'), stride=10)
    t2 = md.load(get_fn('traj.h5'), stride=10)
    # don't center t1, and use it without precentered
    # explicitly center t2, and use *with* precentered

    for parallel in [True, False]:
        t2.center_coordinates()
        eq(t1.n_frames, t2.n_frames)
        for i in range(t1.n_frames):
            ref = np.zeros(t1.n_frames)
            for j in range(t1.n_frames):
                ref[j] = rmsd_qcp(t1.xyz[j], t1.xyz[i])
            val1 = md.rmsd(t1, t1, i, parallel=parallel, precentered=False)
            val2 = md.rmsd(t2, t2, i, parallel=parallel, precentered=True)

            eq(ref, val1, decimal=3)
            eq(val1, val2)
예제 #6
0
def test_precentered_1(get_fn):
    # test rmsd against the numpy version, using the same trajectory
    # as target and reference
    t1 = md.load(get_fn('traj.h5'), stride=10)
    t2 = md.load(get_fn('traj.h5'), stride=10)
    # don't center t1, and use it without precentered
    # explicitly center t2, and use *with* precentered

    for parallel in [True, False]:
        t2.center_coordinates()
        eq(t1.n_frames, t2.n_frames)
        for i in range(t1.n_frames):
            ref = np.zeros(t1.n_frames)
            for j in range(t1.n_frames):
                ref[j] = rmsd_qcp(t1.xyz[j], t1.xyz[i])
            val1 = md.rmsd(t1, t1, i, parallel=parallel, precentered=False)
            val2 = md.rmsd(t2, t2, i, parallel=parallel, precentered=True)

            eq(ref, val1, decimal=3)
            eq(val1, val2)
예제 #7
0
def test_precentered_2(get_fn):
    # test rmsd against the numpy version, using the difference
    # trajectories as target and reference
    t1_a = md.load(get_fn('traj.h5'), stride=10)
    t2_a = md.load(get_fn('traj.h5'), stride=10)
    t1_b = md.load(get_fn('traj.h5'), stride=10)
    t2_b = md.load(get_fn('traj.h5'), stride=10)
    # don't center t1, and use it without precentered
    # explicitly center t2, and use *with* precentered

    t2_a.center_coordinates()
    t2_b.center_coordinates()

    for parallel in [True, False]:
        for i in range(t1_b.n_frames):
            ref = np.zeros(t1_a.n_frames)
            for j in range(t1_a.n_frames):
                ref[j] = rmsd_qcp(t1_a.xyz[j], t1_b.xyz[i])
            val1 = md.rmsd(t1_a, t1_b, i, parallel=parallel, precentered=False)
            val2 = md.rmsd(t2_a, t2_b, i, parallel=parallel, precentered=True)

            eq(ref, val1, decimal=3)
            eq(val1, val2, decimal=4)
예제 #8
0
파일: test_rmsd.py 프로젝트: tjz2026/mdtraj
def test_precentered_2():
    # test rmsd against the numpy version, using the difference
    # trajectories as target and reference
    t1_a = md.load(get_fn('traj.h5'), stride=10)
    t2_a = md.load(get_fn('traj.h5'), stride=10)
    t1_b = md.load(get_fn('traj.h5'), stride=10)
    t2_b = md.load(get_fn('traj.h5'), stride=10)
    # don't center t1, and use it without precentered
    # explicitly center t2, and use *with* precentered

    t2_a.center_coordinates()
    t2_b.center_coordinates()

    for parallel in [True, False]:
        for i in range(t1_b.n_frames):
            ref = np.zeros(t1_a.n_frames)
            for j in range(t1_a.n_frames):
                ref[j] = rmsd_qcp(t1_a.xyz[j], t1_b.xyz[i])
            val1 = md.rmsd(t1_a, t1_b, i, parallel=parallel, precentered=False)
            val2 = md.rmsd(t2_a, t2_b, i, parallel=parallel, precentered=True)

            eq(ref, val1, decimal=3)
            eq(val1, val2, decimal=4)
예제 #9
0
# But for some applications like clustering, we want to run many
# rmsd() calculations per trajectory frame. Under these circumstances,
# the centering of the trajectories is going to be done many times, which
# leads to a slight slowdown. If we manually center the trajectory
# and then inform the rmsd() function that the centering has been
# precomputed, we can achieve ~2x speedup, depending on your machine
# and the number of atoms.

t.center_coordinates()
start = time.time()
for i in range(100):
    md.rmsd(t, t, 0, precomputed=True)
print 'md.rmsd(precomputed=True): %.2f rmsds / s' % ((t.n_frames * 100) / (time.time() - start))

# Just for fun, let's compare this code to the straightforward
# numpy implementation of the same algorithm, which mdtraj has
# (mostly for testing) in the  mdtraj.geometry.alignment subpackage

from mdtraj.geometry.alignment import rmsd_qcp
start = time.time()
for k in range(t.n_frames):
    rmsd_qcp(t.xyz[0], t.xyz[k])
print 'pure numpy rmsd_qcp(): %.2f rmsds / s' % (t.n_frames / (time.time() - start))

# The :func:`md.rmsd()` code is *a lot* faster. If you go look at the :func:`rmsd_qcp`
# source code, you'll see that it's not because that code is particularly slow or
# unoptimized. It's about as good as you can do with numpy. The reason for the speed
# difference is that an inordinate amount of time was put into hand-optimizing
# an SSE3 implementation in C for the :func:`md.rmsd()` code.
예제 #10
0
def test_rmsd_nonzero():
    rmsd_kabsch = alignment.rmsd_kabsch(xyz1, xyz3)
    rmsd_qcp = alignment.rmsd_qcp(xyz1, xyz3)
    eq(rmsd_kabsch, rmsd_qcp, decimal=5)
예제 #11
0
def test_rmsd_zero():
    rmsd_kabsch = alignment.rmsd_kabsch(xyz1, xyz2)
    rmsd_qcp = alignment.rmsd_qcp(xyz1, xyz2)
    eq(float(rmsd_kabsch), 0.0, decimal=5)
    eq(float(rmsd_qcp), 0.0, decimal=5)
예제 #12
0
def test_rmsd_nonzero():
    rmsd_kabsch = alignment.rmsd_kabsch(xyz1, xyz3)
    rmsd_qcp = alignment.rmsd_qcp(xyz1, xyz3)
    eq(rmsd_kabsch, rmsd_qcp, decimal=5)
예제 #13
0
def test_rmsd_zero():
    rmsd_kabsch = alignment.rmsd_kabsch(xyz1, xyz2)
    rmsd_qcp = alignment.rmsd_qcp(xyz1, xyz2)
    eq(float(rmsd_kabsch), 0.0, decimal=5)
    eq(float(rmsd_qcp), 0.0, decimal=5)