def prepare_training(self, file_id_list_name, wav_dir, lab_dir, mfc_dir, work_dir, multiple_speaker): print('---preparing enverionment') self.cfg_dir = os.path.join(work_dir, 'config') self.model_dir = os.path.join(work_dir, 'model') self.cur_dir = os.path.join(self.model_dir, 'hmm0') if not os.path.exists(self.cfg_dir): os.makedirs(self.cfg_dir) if not os.path.exists(self.cur_dir): os.makedirs(self.cur_dir) self.phonemes = os.path.join(work_dir, 'mono_phone.list') self.phoneme_map = os.path.join(work_dir, 'phoneme_map.dict') # HMMs self.proto = os.path.join(self.cfg_dir, 'proto') # SCP files self.copy_scp = os.path.join(self.cfg_dir, 'copy.scp') self.test_scp = os.path.join(self.cfg_dir, 'test.scp') self.train_scp = os.path.join(self.cfg_dir, 'train.scp') # CFG self.cfg = os.path.join(self.cfg_dir, 'cfg') # The following is only correct for the default values in the cfg file given # in gen_mfcc.py. If you changed the cfg for mfcc extraction, change it here accordingly. open(self.cfg, 'w').write("""TARGETRATE = 50000.0 TARGETKIND = USER WINDOWSIZE = 250000.0 PREEMCOEF = 0.97 USEHAMMING = T ENORMALIZE = T CEPLIFTER = 22 NUMCHANS = 20 NUMCEPS = 12 """) self.wav_dir = wav_dir self.lab_dir = lab_dir self.mfc_dir = mfc_dir if not os.path.exists(self.mfc_dir): os.makedirs(self.mfc_dir) self.mono_lab_dir = os.path.join(work_dir, 'mono_no_align') if not os.path.exists(self.mono_lab_dir): # shutil.rmtree(self.mono_lab_dir) os.makedirs(self.mono_lab_dir) file_id_list = self._read_file_list(file_id_list_name) print('---checking data') speaker_utt_dict = self._check_data(file_id_list, multiple_speaker) print('---feature_normalisation') for key_name in list(speaker_utt_dict.keys()): print(" ---create normaliser for speaker {}.".format(key_name)) normaliser = MeanVarianceNorm(39) normaliser.feature_normalisation(speaker_utt_dict[key_name], speaker_utt_dict[key_name]) ## save to itself print(time.strftime("%c")) print('---making proto') self._make_proto()
def prepare_training(self, file_id_list_name, lab_dir, work_dir, multiple_speaker): print '---preparing enverionment' self.cfg_dir = os.path.join(work_dir, 'config') self.model_dir = os.path.join(work_dir, 'model') self.cur_dir = os.path.join(self.model_dir, 'hmm0') if not os.path.exists(self.cfg_dir): os.makedirs(self.cfg_dir) if not os.path.exists(self.cur_dir): os.makedirs(self.cur_dir) self.phonemes = os.path.join(work_dir, 'mono_phone.list') self.phoneme_map = os.path.join(work_dir, 'phoneme_map.dict') # HMMs self.proto = os.path.join(self.cfg_dir, 'proto') # SCP files self.copy_scp = os.path.join(self.cfg_dir, 'copy.scp') self.test_scp = os.path.join(self.cfg_dir, 'test.scp') self.train_scp = os.path.join(self.cfg_dir, 'train.scp') # CFG self.cfg = os.path.join(self.cfg_dir, 'cfg') self.wav_dir = wav_dir self.lab_dir = lab_dir self.mfc_dir = os.path.join(work_dir, 'mfc') if not os.path.exists(self.mfc_dir): os.makedirs(self.mfc_dir) self.mono_lab_dir = os.path.join(work_dir, 'mono_no_align') if not os.path.exists(self.mono_lab_dir): os.makedirs(self.mono_lab_dir) self.temp_path = os.path.join(work_dir, 'tmp') if not os.path.exists(self.temp_path): os.makedirs(self.temp_path) self.scp_split_dir = os.path.join(self.temp_path, 'scp_split') if not os.path.exists(self.scp_split_dir): os.makedirs(self.scp_split_dir) self.split_per_utterance = 1000 file_id_list = self._read_file_list(file_id_list_name) print '---checking data' speaker_utt_dict = self._check_data(file_id_list, multiple_speaker) print '---extracting features' self._HCopy() print time.strftime("%c") print '---feature_normalisation' normaliser = MeanVarianceNorm(39) for key_name in speaker_utt_dict.keys(): normaliser.feature_normalisation( speaker_utt_dict[key_name], speaker_utt_dict[key_name]) ## save to itself print time.strftime("%c") print '---making proto' self._make_proto()
def prepare_training(self, file_id_list_name, wav_dir, lab_dir, work_dir, multiple_speaker): print('---preparing environment') self.cfg_dir = os.path.join(work_dir, 'config') self.model_dir = os.path.join(work_dir, 'model') self.cur_dir = os.path.join(self.model_dir, 'hmm0') if not os.path.exists(self.cfg_dir): os.makedirs(self.cfg_dir) if not os.path.exists(self.cur_dir): os.makedirs(self.cur_dir) self.phonemes = os.path.join(work_dir, 'mono_phone.list') self.phoneme_map = os.path.join(work_dir, 'phoneme_map.dict') # HMMs self.proto = os.path.join(self.cfg_dir, 'proto') # SCP files self.copy_scp = os.path.join(self.cfg_dir, 'copy.scp') self.test_scp = os.path.join(self.cfg_dir, 'test.scp') self.train_scp = os.path.join(self.cfg_dir, 'train.scp') # CFG self.cfg = os.path.join(self.cfg_dir, 'cfg') self.wav_dir = "/lium/raid01_b/tgranjon/synpaflex/wavs" self.lab_dir = lab_dir self.mfc_dir = os.path.join(work_dir, 'mfc') if not os.path.exists(self.mfc_dir): os.makedirs(self.mfc_dir) self.mono_lab_dir = os.path.join(work_dir, 'mono_no_align') if not os.path.exists(self.mono_lab_dir): os.makedirs(self.mono_lab_dir) file_id_list = self._read_file_list(file_id_list_name) print('---checking data') speaker_utt_dict = self._check_data(file_id_list, multiple_speaker) print('---extracting features') self._HCopy() print(time.strftime("%c")) print('---feature_normalisation') for key_name in speaker_utt_dict.keys(): normaliser = MeanVarianceNorm(39) normaliser.feature_normalisation( speaker_utt_dict[key_name], speaker_utt_dict[key_name]) ## save to itself print(time.strftime("%c")) print('---making proto') self._make_proto()
def prepare_training(self, file_id_list_name, wav_dir, lab_dir, work_dir, multiple_speaker): print("---preparing enverionment") self.cfg_dir = os.path.join(work_dir, "config") self.model_dir = os.path.join(work_dir, "model") self.cur_dir = os.path.join(self.model_dir, "hmm0") if not os.path.exists(self.cfg_dir): os.makedirs(self.cfg_dir) if not os.path.exists(self.cur_dir): os.makedirs(self.cur_dir) self.phonemes = os.path.join(work_dir, "mono_phone.list") self.phoneme_map = os.path.join(work_dir, "phoneme_map.dict") # HMMs self.proto = os.path.join(self.cfg_dir, "proto") # SCP files self.copy_scp = os.path.join(self.cfg_dir, "copy.scp") self.test_scp = os.path.join(self.cfg_dir, "test.scp") self.train_scp = os.path.join(self.cfg_dir, "train.scp") # CFG self.cfg = os.path.join(self.cfg_dir, "cfg") self.wav_dir = wav_dir self.lab_dir = lab_dir self.mfc_dir = os.path.join(work_dir, "mfc") if not os.path.exists(self.mfc_dir): os.makedirs(self.mfc_dir) self.mono_lab_dir = os.path.join(work_dir, "mono_no_align") if not os.path.exists(self.mono_lab_dir): os.makedirs(self.mono_lab_dir) file_id_list = self._read_file_list(file_id_list_name) print("---checking data") speaker_utt_dict = self._check_data(file_id_list, multiple_speaker) print("---extracting features") self._HCopy() print(time.strftime("%c")) print("---feature_normalisation") normaliser = MeanVarianceNorm(39) for key_name in list(speaker_utt_dict.keys()): normaliser.feature_normalisation( speaker_utt_dict[key_name], speaker_utt_dict[key_name]) ## save to itself print(time.strftime("%c")) print("---making proto") self._make_proto()
def prepare_training(self, file_id_list_name, wav_dir, lab_dir, work_dir, multiple_speaker): print('---preparing enverionment') self.cfg_dir = os.path.join(work_dir, 'config') self.model_dir = os.path.join(work_dir, 'model') self.cur_dir = os.path.join(self.model_dir, 'hmm0') if not os.path.exists(self.cfg_dir): os.makedirs(self.cfg_dir) if not os.path.exists(self.cur_dir): os.makedirs(self.cur_dir) self.phonemes = os.path.join(work_dir, 'mono_phone.list') self.phoneme_map = os.path.join(work_dir, 'phoneme_map.dict') # HMMs self.proto = os.path.join(self.cfg_dir, 'proto') # SCP files self.copy_scp = os.path.join(self.cfg_dir, 'copy.scp') self.test_scp = os.path.join(self.cfg_dir, 'test.scp') self.train_scp = os.path.join(self.cfg_dir, 'train.scp') # CFG self.cfg = os.path.join(self.cfg_dir, 'cfg') self.wav_dir=wav_dir self.lab_dir = lab_dir self.mfc_dir = os.path.join(work_dir, 'mfc') if not os.path.exists(self.mfc_dir): os.makedirs(self.mfc_dir) self.mono_lab_dir = os.path.join(work_dir, 'mono_no_align') if not os.path.exists(self.mono_lab_dir): os.makedirs(self.mono_lab_dir) file_id_list = self._read_file_list(file_id_list_name) print('---checking data') speaker_utt_dict = self._check_data(file_id_list, multiple_speaker) print('---extracting features') self._HCopy() print(time.strftime("%c")) print('---feature_normalisation') normaliser = MeanVarianceNorm(39) for key_name in list(speaker_utt_dict.keys()): normaliser.feature_normalisation(speaker_utt_dict[key_name], speaker_utt_dict[key_name]) ## save to itself print(time.strftime("%c")) print('---making proto') self._make_proto()