def _sample_inference(): r = Inference(problem=_sample_problem(), starting_parameters=[1, 2, 3, 4, 5, 6, 7], starting_conditions=[1, 2, 3], variable_parameters=['c_0', 'c_1'], observed_trajectories=[ Trajectory([1, 2], [2, 3], Moment([1, 0, 0], 'x')) ], distance_function_type='gamma', maxh=0.01) # Some simulation kwargs return r
def generate_inference_object(self): parameters = [0.001, 0.5, 330.0] initial_conditions = [320.0, 0] optimiser_method = 'sum_of_squares' variable_parameters = ['c_0', 'c_1', 'c_2', 'y_0'] inference = Inference(self.dimer_problem, parameters, initial_conditions, variable_parameters, self.observed_trajectories, distance_function_type=optimiser_method) return inference
def check_initialisation(variable_parameters, expected_parameters_with_variability, expected_initial_conditions_with_variability, expected_constraints): p = Inference( self.dimer_problem, parameters, initial_conditions, variable_parameters, [Trajectory([1, 2, 3], [1, 2, 3], Moment([1], symbol='x'))]) self.assertEquals(p.starting_parameters_with_variability, expected_parameters_with_variability) self.assertEqual(p.starting_conditions_with_variability, expected_initial_conditions_with_variability) self.assertEqual(p.constraints, expected_constraints)
def generate_inference_object(self): parameters = [0.001, 0.5, 330.0] initial_conditions = [320.0, 0] optimiser_method = 'sum_of_squares' variable_parameters = ['c_0', 'c_1', 'c_2', 'y_0'] inference = Inference( self.dimer_problem, parameters, initial_conditions, variable_parameters, # Only means trajectory [self.observed_trajectories[0]], distance_function_type=optimiser_method, # We need to increase rtol here, otherwise wildly different result happens rtol=1e-4) return inference
def generate_inference_object(self): starting_params = [ 0.0008721146403084233, 0.34946447118966373, 285.8232870026351 ] starting_conditions = [309.6216092798371, 0] optimiser_method = 'lognormal' variable_parameters = { 'c_0': (0.0, 0.001), 'c_1': (0.0, 0.5), 'c_2': (260.0, 330.0), 'y_0': (290.0, 320.0) } inference = Inference( self.dimer_problem, starting_params, starting_conditions, variable_parameters, # Only means trajectory [self.observed_trajectories[0]], distance_function_type=optimiser_method) return inference
def generate_inference_object(self): starting_params = [ 0.0003553578523702354, 0.29734640303161364, 306.2260484701648 ] starting_conditions = [304.7826314512718, 0] optimiser_method = 'normal' variable_parameters = { 'c_0': (0.0, 0.001), 'c_1': (0.0, 0.5), 'c_2': (260.0, 330.0), 'y_0': (290.0, 320.0) } inference = Inference( self.dimer_problem, starting_params, starting_conditions, variable_parameters, # Only means trajectory [self.observed_trajectories[0]], distance_function_type=optimiser_method) return inference