r'Bestimmung der Lagen der $K_\alpha$, $K_\beta$-Peaks durch Gaussfits an die Zählraten-Winkel-Abhängigkeit des NaCl-Kristalls.' ] # Constants d_LiF = 201.4 * cs.pico rho_NaCl = 2.164 * cs.gram / cs.centi**3 M_NaCl = 58.44 * cs.gram # (1) Analysis of the spectrum of the LiF-crystal # Determination of planck's constant U1 = 35.0 * cs.kilo t1 = 5.0 beta1, n1 = np.loadtxt('data/255/data1.txt', unpack=True) d_n1 = sqrt(n1 * t1) / t1 n1_0 = ms.mv(n1[0:7]) d_n1_0 = ms.dsto_mv(n1[0:7]) ms.pltext.initplot(num=1, title=titles[0], xlabel=r'$\beta$ / $^\circ$', ylabel=r'$n$ / (1/s)', fignum=True) s1, d_s1, b1, d_b1 = ms.linreg(beta1[:20], n1[:20], d_n1[:20], fit_range=range(10, 13), plot=True) beta1_G = (n1_0 - b1) / s1 d_beta1_G = beta1_G * sqrt((d_n1_0**2 + d_b1**2) / (n1_0 - b1)**2 + (d_s1 / s1)**2) beta1_G *= cs.degree d_beta1_G *= cs.degree ld1_G = 2 * d_LiF * sin(beta1_G) d_ld1_G = 2 * d_LiF * cos(beta1_G) * d_beta1_G h1 = (cs.e * U1 / cs.c) * ld1_G d_h1 = (cs.e * U1 / cs.c) * d_ld1_G beta1_G2 = arcsin(ld1_G / d_LiF) d_beta1_G2 = d_ld1_G / sqrt(d_LiF**2 - ld1_G**2) print()
74.821, 75.366, 74.457, 74.185, 74.73, 76.003, 75.003, 75.003, 74.003, 74.73, 75.276, 75.639, 75.912, 75.73, 76.185, 77.548 ]) dt = dx = dy = npfarray([]) for n in range(168): dt = np.append(dt, t[n + 1] - t[n]) dx = np.append(dx, x[n + 1] - x[n]) dy = np.append(dy, y[n + 1] - y[n]) r_k = 755e-9 / 2. r_k_dsys = 30e-9 / 2. T = npfarray([22.6, 23.0]) T_dsys = npfarray([0.1, 0.1]) T_mv = mv(T) + T0 T_dtot = dtot(dsys_mv(T_dsys), dsto_mv(T)) nu = 9.40e-4 nu_dsys = 0.05e-4 # Teilchenbewegung pltext.initplot(num=1, title='Bewegung des Teilchens', xlabel='x in m', ylabel='y in m') plt.plot(x, y, marker='s') plt.savefig('fig1.pdf', format='pdf') # mittleres Verschiebungsquadrat r_sqr = dx**2 + dy**2 r_sqr_mv = mv(r_sqr) r_sqr_dsto = dsto_mv(r_sqr)
-0.00493333, 0.03506667, -0.00493333, -0.08493333, -0.08493333, 0.03506667, -0.00493333, 0.03506667, -0.00493333, 0.03506667, 0.03506667, -0.00493333, 0.03506667, -0.00493333, -0.00493333, -0.00493333, -0.00493333, 0.03506667, -0.00493333, 0.03506667, 0.03506667, -0.00493333, 0.03506667, -0.00493333, 0.03506667, -0.00493333, 0.03506667, -0.00493333, -0.00493333, 0.03506667, -0.00493333, 0.03506667 ]) kl_v = 0.1e-3 # Wellenlänge Laser ds = wl_se - wl_sa ds_dsys = sqrt(wl_se_dsys**2 + wl_sa_dsys**2) wl = 2. * ds / wl_m wl_dsys = 2. / wl_m * sqrt(ds_dsys**2 + (wl_m_dsys / wl_m)**2) wl_mv = mv(wl) wl_mv_dsto = dsto_mv(wl) wl_mv_dsys = dsys_mv(wl_dsys) wl_mv_dtot = dtot(wl_mv_dsys, wl_mv_dsto) print() print('Wellenlänge Laser:') print( tbl([ lst(ds, ds_dsys, 'ds'), lst(wl_m, wl_m_dsys, 'm'), lst(wl, wl_dsys, 'wl') ], )) print(val('Mitellwert', wl_mv, wl_mv_dtot)) print(sig('Abweichung', wl_mv, wl_mv_dtot, wl_lit, wl_lit_dsys)) # Brechungsindex Luft
# Untergrund unterg = loadtxt('data/252_untergrund.dat', usecols=[1]) # Silber n1 = loadtxt('data/252_n1.dat', usecols=[1]) n2 = loadtxt('data/252_n2.dat', usecols=[1]) n3 = loadtxt('data/252_n3.dat', usecols=[1]) n4 = loadtxt('data/252_n4.dat', usecols=[1]) N_ag = n1 + n2 + n3 + n4 N_ag_err = sqrt(N_ag) t = arange(5, 405, 10) unterg_ag_mv = mv(4 * unterg) unterg_ag_mv_dsto = dsto_mv(4 * unterg, ddof=0) def fitfunc(x, A1, l1, A2, l2): return A1 * exp(-l1 * x) + A2 * exp(-l2 * x) + unterg_ag_mv def fitfunc_pf(x, A1, l1, A2, l2): return A1 * exp(-l1 * x) + A2 * exp( -l2 * x) + unterg_ag_mv + unterg_ag_mv_dsto def fitfunc_mf(x, A1, l1, A2, l2): return A1 * exp(-l1 * x) + A2 * exp( -l2 * x) + unterg_ag_mv - unterg_ag_mv_dsto
U_mot = 24.0 U_mot_dsys = 0.1 I_mot = 2.3 I_mot_dsys = 0.1 km_U_heiz = 5.58 km_U_heiz_dsys = 0.04 km_I_heiz = 1.14 * 5 km_I_heiz_dsys = 0.02 * 5 km_f = 325.2 / 60. km_f_dsys = 0.1 / 60. km_dT = 22.1 - 18.65 km_dT_dsys = sqrt(0.25**2 + 0.1**2) km_Vps = npfarray([199.5,198.4,200.7,200.1,200.5]) / 6e7 km_Vps_mv = mv(km_Vps) km_Vps_dsys = dsto_mv(km_Vps) gf_t = 180. gf_t_dsys = 15. gf_V = 1e-6 gf_V_dsys = 0.5e-6 gf_f = 306.5 / 60. gf_f_dsys = 0.1 / 60. wk_l = 0.250 wk_l_dsys = 0.005 wk_Vps = 199.0 / 6e7 wk_Vps_dsys = 1.5 / 6e7 wk_dT = 26.3 - 19.0 wk_dT_dsys = sqrt(2) * 0.1 wk_F = npfarray([0.0,0.2,0.4,0.6,0.8])
rh_p_dsys = 0.15e2 k_air_lit = 0.78 * 1.401 + 0.21 * 1.398 + 0.01 * 1.648 k_arg_lit = 1.648 # Clément & Desormes h1 = cd_h1r - cd_h1l h3 = cd_h3r - cd_h3l hi_dsys = sqrt(2) * cd_hix_dsys cd_k = h1 / (h1 - h3) cd_k_dsys = hi_dsys / (h1 - h3) * sqrt((1 + h1 / (h1 - h3))**2 + (1 / (h1 - h3))**2) cd_k_mv = mv(cd_k) cd_k_dsto_mv = dsto_mv(cd_k) cd_k_dsys_mv = dsys_mv(cd_k_dsys) cd_k_dtot = sqrt(cd_k_dsto_mv**2 + cd_k_dsys_mv**2) print() print('Clément & Desormes:') print() print(tbl(['h1', 'h3', 'k'], [h1, h3, cd_k], [hi_dsys, hi_dsys, cd_k_dsys])) print() print(val('k', cd_k_mv, cd_k_dtot)) print(sig('dev', cd_k_mv, cd_k_dtot, k_air_lit)) # Rüchardt r_air = rh_2r_air / 2. r_air_dsys = rh_2r_dsys / 2. T_air = rh_50T_air / 50.
dIz_1x15 = m_s * 0.15 / (2. * pi)**2 * sqrt((g * dslope_1x15)**2 + (dg * slope_1x15)**2) Iz_1x20 = m_s * g * 0.20 * slope_1x20 / (2. * pi)**2 dIz_1x20 = m_s * 0.20 / (2. * pi)**2 * sqrt((g * dslope_1x20)**2 + (dg * slope_1x20)**2) Iz_2x15 = 2. * m_s * g * 0.15 * slope_2x15 / (2. * pi)**2 dIz_2x15 = 2. * m_s * 0.15 / (2. * pi)**2 * sqrt((g * dslope_2x15)**2 + (dg * slope_2x15)**2) Iz_2x20 = 2. * m_s * g * 0.20 * slope_2x20 / (2. * pi)**2 dIz_2x20 = 2. * m_s * 0.20 / (2. * pi)**2 * sqrt((g * dslope_2x20)**2 + (dg * slope_2x20)**2) Iz_list = np.array([Iz_1x15, Iz_1x20, Iz_2x15, Iz_2x20]) dIz_list = np.array([dIz_1x15, dIz_1x20, dIz_2x15, dIz_2x20]) Iz = mv(Iz_list) Iz_dsto = dsto_mv(Iz_list) Iz_dsys = dsys_mv(dIz_list) Iz_dtot = dtot(Iz_dsto, Iz_dsys) tblstr = ['1@15', '1@20', '2@15', '2@20'] print() print('Frequency f:') print( tbl(tblstr, [f_m1x15, f_m1x20, f_m2x15, f_m2x20], [df_m1x15, df_m1x20, df_m2x15, df_m2x20])) print() print('Linreg results (slope / yitc):') print( tbl(tblstr, [[slope_1x15, yitc_1x15], [slope_1x20, yitc_1x20], [slope_2x15, yitc_2x15], [slope_2x20, yitc_2x20]],
ΔT_Ag = 10.0 ΔT_In = 120.0 T0 = 8 * cs.minute T_Ag = 400 T_In = 50 * cs.minute n0 = np.loadtxt('data/252/252_1j.dat', usecols=[1], unpack=True) n_Ag_1 = np.loadtxt('data/252/252_2j.dat', usecols=[1], unpack=True) n_Ag_2 = np.loadtxt('data/252/252_3j.dat', usecols=[1], unpack=True) n_Ag_3 = np.loadtxt('data/252/252_4j.dat', usecols=[1], unpack=True) n_Ag_4 = np.loadtxt('data/252/252_5j.dat', usecols=[1], unpack=True) n_In = np.loadtxt('data/252/252_6j.dat', usecols=[1], unpack=True) # Background radiation n0_m = ms.mv(n0 / ΔT0) d_n0_m = ms.dsto_mv(n0 / ΔT0) # Fit function def f_Ag(x, A1, λ1, A2, λ2): return A1 * exp(-λ1 * x) + A2 * exp(-λ2 * x) def f_In(x, A, λ): return A * exp(-λ * x) # Ag decay t_Ag = np.arange(ΔT_Ag / 2, T_Ag + ΔT_Ag / 2, ΔT_Ag) N_Ag = (n_Ag_1 + n_Ag_2 + n_Ag_3 + n_Ag_4) d_N_Ag = sqrt(N_Ag) / (4 * ΔT_Ag)