def nasa_polynomial_task(mdriver_path, spc_locs_dct, thm_paths_dct, spc_dct, spc_mod_dct, spc_mods, sort_info_lst, ref_scheme): """ generate the nasa polynomials """ ckin_nasa_str_dct = {} ckin_nasa_str_dct[0] = '' ckin_path = output_path('CKIN', prefix=mdriver_path) for spc_name in spc_locs_dct: for idx, spc_locs in enumerate(spc_locs_dct[spc_name], start=1): if idx not in ckin_nasa_str_dct: ckin_nasa_str_dct[idx] = '' spc_locs = tuple(spc_locs) ioprinter.nasa('calculate', spc_name) # for spc_mod in spc_mods: # ioprinter.message('for: ', spc_locs, spc_mod) # # Write the header describing the models used in thermo calcs # ckin_nasa_str += writer.ckin.model_header( # [spc_mod], spc_mod_dct, refscheme=ref_scheme) # # Build and write NASA polynomial in CHEMKIN-format string # # Call dies if you haven't run "write mess" task # ckin_nasa_str += nasapoly.build_polynomial( # spc_name, spc_dct, # thm_paths_dct[spc_name][tuple(spc_locs)][spc_mod][0], # thm_paths_dct[spc_name][tuple(spc_locs)][spc_mod][1], # spc_locs=spc_locs, spc_mod=spc_mod) # ckin_nasa_str += '\n\n' ioprinter.message('for: ', spc_locs, ' combined models') ckin_nasa_str_dct[idx] += writer.ckin.model_header( spc_mods, spc_mod_dct, sort_info_lst=sort_info_lst, refscheme=ref_scheme) ckin_nasa_str_dct[idx] += nasapoly.build_polynomial( spc_name, spc_dct, thm_paths_dct[spc_name][tuple(spc_locs)]['mod_total'][0], thm_paths_dct[spc_name][tuple(spc_locs)]['mod_total'][1], spc_locs_idx=idx - 1, spc_mod=','.join(spc_mods)) ckin_nasa_str_dct[idx] += '\n\n' ioprinter.info_message('CKIN NASA STR\n') ioprinter.info_message(ckin_nasa_str_dct[idx]) ioprinter.message('for combined rid cids:', spc_locs_dct[spc_name]) ckin_nasa_str_dct[0] += writer.ckin.model_header( spc_mods, spc_mod_dct, sort_info_lst=sort_info_lst, refscheme=ref_scheme) ckin_nasa_str_dct[0] += nasapoly.build_polynomial( spc_name, spc_dct, thm_paths_dct[spc_name]['spc_total'][0], thm_paths_dct[spc_name]['spc_total'][1], spc_locs_idx='final', spc_mod=','.join(spc_mods)) ckin_nasa_str_dct[0] += '\n\n' ioprinter.info_message('CKIN NASA STR\n') ioprinter.info_message(ckin_nasa_str_dct[0]) return ckin_nasa_str_dct, ckin_path
def build_polynomial(spc_name, spc_dct, pf_path, nasa_path): """ Build a nasa polynomial """ # Read the temperatures from the pf.dat file, check if viable temps = pfrunner.read_messpf_temps(pf_path) ioprinter.nasa('fit', temps=temps) ioprinter.generating('NASA polynomials', nasa_path) # Generate forumula spc_dct_i = spc_dct[spc_name] formula_str = automol.inchi.formula_string(spc_dct_i['inchi']) formula_dct = automol.inchi.formula(spc_dct_i['inchi']) hform0 = spc_dct_i['Hfs'][0] thermp_script_str = autorun.SCRIPT_DCT['thermp'] pac99_script_str = autorun.SCRIPT_DCT['pac99'].format(formula_str) # Copy MESSPF output file to THERMP run dir and rename to pf.dat pf_str = ioformat.pathtools.read_file(pf_path, 'pf.dat') print('pf_path test:', pf_path) print('pf_str test:', pf_str) hform298, poly_str = autorun.thermo( thermp_script_str, pac99_script_str, nasa_path, pf_str, spc_name, formula_dct, hform0, enthalpyt=0.0, breakt=1000.0, convert=True) # Write the full CHEMKIN strings ckin_str = writer.ckin.nasa_polynomial(hform0, hform298, poly_str) full_ckin_str = '\n' + ckin_str # Print thermo return full_ckin_str
def build_polynomial(spc_name, spc_dct, pf_path, nasa_path, spc_locs_idx=None, spc_mod=None): """ For a given species: obtain partition function data read from a MESSPF output file currently existing in the RUN filesystem as well as the previously computed 0 K heat-of-formation from the species dictionary. Then use this to run ThermP and PAC99 in the RUN filesystem to generate a ChemKin-formatted 7-coefficient NASA polynomial. :param spc_name: mechanism name of species to write MESSPF input for :type spc_name: str :param spc_dct: :type spc_dct: :param pf_path: path to existing MESSPF file in RUN filesystem :type pf_path: str :param nasa_path: path to run ThermP+PAC99 in RUN filesystem :type nasa_path: str :rtype: str """ # Read the temperatures from the pf.dat file, check if viable ioprinter.nasa('fit', path=pf_path) ioprinter.generating('NASA polynomials', nasa_path) # Generate forumula spc_dct_i = spc_dct[spc_name] formula_str = automol.inchi.formula_string(spc_dct_i['inchi']) formula_dct = automol.inchi.formula(spc_dct_i['inchi']) if spc_locs_idx == 'final': hform0 = spc_dct_i['Hfs']['final'][0] spc_label = spc_name elif spc_locs_idx is not None: hform0 = spc_dct_i['Hfs'][spc_locs_idx][spc_mod][0] spc_label = spc_name # + '_{:g}'.format(spc_locs_idx) # spc_label = spc_name + '_' + spc_locs[1][:5] else: hform0 = spc_dct_i['Hfs'][0] spc_label = spc_name thermp_script_str = autorun.SCRIPT_DCT['thermp'] pac99_script_str = autorun.SCRIPT_DCT['pac99'].format(formula_str) # Copy MESSPF output file to THERMP run dir and rename to pf.dat pf_str = ioformat.pathtools.read_file(pf_path, 'pf.dat') hform298, poly_str = autorun.thermo(thermp_script_str, pac99_script_str, nasa_path, pf_str, spc_label, formula_dct, hform0, enthalpyt=0.0, breakt=1000.0, convert=True) # Write the full CHEMKIN strings ckin_str = '\n' + writer.ckin.nasa_polynomial(hform0, hform298, poly_str) return ckin_str
def run(spc_rlst, therm_tsk_lst, pes_mod_dct, spc_mod_dct, spc_dct, run_prefix, save_prefix): """ main driver for thermo run """ # Print Header fo ioprinter.info_message('Calculating Thermochem:') ioprinter.runlst(('SPC', 0, 0), spc_rlst) # ------------------------------------------------ # # PREPARE INFORMATION TO PASS TO THERMDRIVER TASKS # # ------------------------------------------------ # # Build a list of the species to calculate thermochem for loops below spc_mods = list(spc_mod_dct.keys()) # hack split_spc_lst = split_unstable_spc(spc_rlst, spc_dct, spc_mod_dct[spc_mods[0]], save_prefix) spc_queue = parser.rlst.spc_queue('spc', tuple(split_spc_lst.values())[0]) # Build the paths [(messpf, nasa)], models and levels for each spc thm_paths = thermo_paths(spc_dct, spc_queue, spc_mods, run_prefix) # ----------------------------------- # # RUN THE REQUESTED THERMDRIVER TASKS # # ----------------------------------- # # Write and Run MESSPF inputs to generate the partition functions write_messpf_tsk = parser.run.extract_task('write_mess', therm_tsk_lst) if write_messpf_tsk is not None: ioprinter.messpf('write_header') spc_mods, pes_mod = parser.models.extract_models(write_messpf_tsk) for idx, spc_name in enumerate(spc_queue): print('write test {}'.format(spc_name)) for spc_mod in spc_mods: messpf_inp_str = thmroutines.qt.make_messpf_str( pes_mod_dct[pes_mod]['therm_temps'], spc_dct, spc_name, pes_mod_dct[pes_mod], spc_mod_dct[spc_mod], run_prefix, save_prefix) ioprinter.messpf('input_string') ioprinter.info_message(messpf_inp_str) autorun.write_input(thm_paths[idx][spc_mod][0], messpf_inp_str, input_name='pf.inp') # Run the MESSPF files that have been written run_messpf_tsk = parser.run.extract_task('run_mess', therm_tsk_lst) if run_messpf_tsk is not None: spc_mod, pes_mod = parser.models.extract_models(run_messpf_tsk) spc_mods = parser.models.split_model(spc_mod[0]) ioprinter.messpf('run_header') for idx, spc_name in enumerate(spc_queue): _spc_mods, coeffs, operators = spc_mods # Run MESSPF for all requested models, combine the PFS at the end ioprinter.message('Run MESSPF: {}'.format(spc_name), newline=1) _pfs = [] for spc_mod in _spc_mods: autorun.run_script(autorun.SCRIPT_DCT['messpf'], thm_paths[idx][spc_mod][0]) _pfs.append( pfrunner.mess.read_messpf(thm_paths[idx][spc_mod][0])) final_pf = pfrunner.mess.combine_pfs(_pfs, coeffs, operators) # need to clean thm path build tot_idx = len(spc_mods) spc_info = sinfo.from_dct(spc_dct[spc_name]) spc_fml = automol.inchi.formula_string(spc_info[0]) thm_prefix = [spc_fml, automol.inchi.inchi_key(spc_info[0])] thm_paths[idx]['final'] = (job_path(run_prefix, 'MESS', 'PF', thm_prefix, locs_idx=tot_idx), job_path(run_prefix, 'THERM', 'NASA', thm_prefix, locs_idx=tot_idx)) pfrunner.mess.write_mess_output(fstring( spc_dct[spc_name]['inchi']), final_pf, thm_paths[idx]['final'][0], filename='pf.dat') # Use MESS partition functions to compute thermo quantities run_fit_tsk = parser.run.extract_task('run_fits', therm_tsk_lst) if run_fit_tsk is not None: spc_mods, pes_mod = parser.models.extract_models(run_fit_tsk) pes_mod_dct_i = pes_mod_dct[pes_mod] ioprinter.nasa('header') chn_basis_ene_dct = {} for idx, spc_name in enumerate(spc_queue): # Take species model and add it to the chn_basis_ene dct spc_mod = spc_mods[0] spc_mod_dct_i = spc_mod_dct[spc_mod] if spc_mod not in chn_basis_ene_dct: chn_basis_ene_dct[spc_mod] = {} # Get the reference scheme and energies (ref in different place) ref_scheme = pes_mod_dct_i['therm_fit']['ref_scheme'] ref_enes = pes_mod_dct_i['therm_fit']['ref_enes'] # Determine info about the basis species used in thermochem calcs basis_dct, uniref_dct = thmroutines.basis.prepare_refs( ref_scheme, spc_dct, [[spc_name, None]], run_prefix, save_prefix) # Get the basis info for the spc of interest spc_basis, coeff_basis = basis_dct[spc_name] # Get the energies for the spc and its basis ene_basis = [] energy_missing = False for spc_basis_i in spc_basis: if spc_basis_i in chn_basis_ene_dct[spc_mod]: ioprinter.message( 'Energy already found for basis species: ' + spc_basis_i) ene_basis.append(chn_basis_ene_dct[spc_mod][spc_basis_i]) else: ioprinter.message( 'Energy will be determined for basis species: ' + spc_basis_i) energy_missing = True if not energy_missing: pf_filesystems = filesys.models.pf_filesys(spc_dct[spc_name], spc_mod_dct_i, run_prefix, save_prefix, saddle=False) ene_spc = ene.read_energy(spc_dct[spc_name], pf_filesystems, spc_mod_dct_i, run_prefix, read_ene=True, read_zpe=True, saddle=False) else: ene_spc, ene_basis = thmroutines.basis.basis_energy( spc_name, spc_basis, uniref_dct, spc_dct, spc_mod_dct_i, run_prefix, save_prefix) for spc_basis_i, ene_basis_i in zip(spc_basis, ene_basis): chn_basis_ene_dct[spc_mod][spc_basis_i] = ene_basis_i # Calculate and store the 0 K Enthalpy hf0k = thmroutines.heatform.calc_hform_0k(ene_spc, ene_basis, spc_basis, coeff_basis, ref_set=ref_enes) spc_dct[spc_name]['Hfs'] = [hf0k] # Write the NASA polynomials in CHEMKIN format ckin_nasa_str = '' ckin_path = output_path('CKIN') for idx, spc_name in enumerate(spc_queue): ioprinter.nasa('calculate', spc_name) # Write the header describing the models used in thermo calcs ckin_nasa_str += writer.ckin.model_header(spc_mods, spc_mod_dct) # Build and write the NASA polynomial in CHEMKIN-format string # Call dies if you haven't run "write mess" task ckin_nasa_str += thmroutines.nasapoly.build_polynomial( spc_name, spc_dct, thm_paths[idx]['final'][0], thm_paths[idx]['final'][1]) ckin_nasa_str += '\n\n' print(ckin_nasa_str) nasa7_params_all = chemkin_io.parser.thermo.create_spc_nasa7_dct( ckin_nasa_str) # print('ckin_nasa_str test', ckin_nasa_str) ioprinter.info_message( 'SPECIES H(0 K) H(298 K) S(298 K) Cp(300 K) Cp(500 K) Cp(1000 K) Cp(1500 K)\n' ) ioprinter.info_message( ' kcal/mol kcal/mol cal/(mol K) ... \n') for spc_name in nasa7_params_all: nasa7_params = nasa7_params_all[spc_name] whitespace = 18 - len(spc_name) h0 = spc_dct[spc_name]['Hfs'][0] h298 = mechanalyzer.calculator.thermo.enthalpy( nasa7_params, 298.15) / 1000. s298 = mechanalyzer.calculator.thermo.entropy(nasa7_params, 298.15) cp300 = mechanalyzer.calculator.thermo.heat_capacity( nasa7_params, 300) cp500 = mechanalyzer.calculator.thermo.heat_capacity( nasa7_params, 500) cp1000 = mechanalyzer.calculator.thermo.heat_capacity( nasa7_params, 1000) cp1500 = mechanalyzer.calculator.thermo.heat_capacity( nasa7_params, 1500) whitespace = whitespace * ' ' ioprinter.info_message( '{}{}{:>7.2f}{:>9.2f}{:>9.2f}{:>9.2f}{:>9.2f}{:>9.2f}{:>9.2f}'. format(spc_name, whitespace, h0, h298, s298, cp300, cp500, cp1000, cp1500)) # Write all of the NASA polynomial strings writer.ckin.write_nasa_file(ckin_nasa_str, ckin_path)
def run(pes_rlst, spc_rlst, therm_tsk_lst, pes_mod_dct, spc_mod_dct, spc_dct, thy_dct, run_prefix, save_prefix, mdriver_path): """ Executes all thermochemistry tasks. :param pes_rlst: species from PESs to run [(PES formula, PES idx, SUP-PES idx) (CHANNEL idx, (REACS, PRODS)) :type pes_rlst: tuple(dict[str: dict]) :param spc_rlst: lst of species to run :type spc_rlst: tuple(dict[str: dict]) :param es_tsk_lst: list of the electronic structure tasks :type es_tsk_lst: tuple(tuple(str, str, dict)) :param spc_dct: species information :type spc_dct: dict[str:dict] :param glob_dct: global information for all species :type glob_dct: dict[str: dict] :param thy_dct: all of the theory information :type thy_dct: dict[str:dict] :param run_prefix: root-path to the run-filesystem :type run_prefix: str :param save_prefix: root-path to the save-filesystem :type save_prefix: str :param mdriver_path: path where mechdriver is running :type mdriver_path: str """ # Print Header ioprinter.info_message('Calculating Thermochem:') ioprinter.runlst(list(spc_rlst.keys())[0], list(spc_rlst.values())[0]) # ------------------------------------------------ # # PREPARE INFORMATION TO PASS TO THERMDRIVER TASKS # # ------------------------------------------------ # # Parse Tasks write_messpf_tsk = parser.run.extract_task('write_mess', therm_tsk_lst) run_messpf_tsk = parser.run.extract_task('run_mess', therm_tsk_lst) run_fit_tsk = parser.run.extract_task('run_fits', therm_tsk_lst) # Build a list of the species to calculate thermochem for loops below # and build the paths [(messpf, nasa)], models and levels for each spc cnf_range = write_messpf_tsk[-1]['cnf_range'] sort_str = write_messpf_tsk[-1]['sort'] spc_locs_dct, thm_paths_dct, sort_info_lst = _set_spc_queue( spc_mod_dct, pes_rlst, spc_rlst, spc_dct, thy_dct, save_prefix, run_prefix, cnf_range, sort_str) # ----------------------------------- # # RUN THE REQUESTED THERMDRIVER TASKS # # ----------------------------------- # # Write and Run MESSPF inputs to generate the partition functions if write_messpf_tsk is not None: thermo_tasks.write_messpf_task(write_messpf_tsk, spc_locs_dct, spc_dct, pes_mod_dct, spc_mod_dct, run_prefix, save_prefix, thm_paths_dct) # Run the MESSPF files that have been written if run_messpf_tsk is not None: thermo_tasks.run_messpf_task(run_messpf_tsk, spc_locs_dct, spc_dct, thm_paths_dct) # Use MESS partition functions to compute thermo quantities if run_fit_tsk is not None: ioprinter.nasa('header') spc_mods, pes_mod = parser.models.extract_models(run_fit_tsk) pes_mod_dct_i = pes_mod_dct[pes_mod] # Get the reference scheme and energies (ref in different place) ref_scheme = pes_mod_dct_i['therm_fit']['ref_scheme'] ref_enes = pes_mod_dct_i['therm_fit']['ref_enes'] spc_dct = thermo_tasks.get_heats_of_formation(spc_locs_dct, spc_dct, spc_mods, spc_mod_dct, ref_scheme, ref_enes, run_prefix, save_prefix) # This has to happen down here because the weights rely on # The heats of formation print('in run_fit_tsk for thermo_driver boltzmann') spc_dct = thermo_tasks.produce_boltzmann_weighted_conformers_pf( run_messpf_tsk, spc_locs_dct, spc_dct, thm_paths_dct) # Write the NASA polynomials in CHEMKIN format ckin_nasa_str_dct, ckin_path = thermo_tasks.nasa_polynomial_task( mdriver_path, spc_locs_dct, thm_paths_dct, spc_dct, spc_mod_dct, spc_mods, sort_info_lst, ref_scheme) for idx, nasa_str in ckin_nasa_str_dct.items(): ioprinter.print_thermo(spc_dct, nasa_str, spc_locs_dct, idx, spc_mods[0]) # Write all of the NASA polynomial strings writer.ckin.write_nasa_file(nasa_str, ckin_path, idx=idx)
def run(pes_rlst, spc_rlst, therm_tsk_lst, pes_mod_dct, spc_mod_dct, spc_dct, run_prefix, save_prefix): """ Executes all thermochemistry tasks. :param pes_rlst: species from PESs to run [(PES formula, PES idx, SUP-PES idx) (CHANNEL idx, (REACS, PRODS)) :type pes_rlst: tuple(dict[str: dict]) :param spc_rlst: lst of species to run :type spc_rlst: tuple(dict[str: dict]) :param es_tsk_lst: list of the electronic structure tasks tuple(tuple(obj, tsk, keyword_dict)) :type es_tsk_lst: tuple(tuple(str, str, dict)) :param spc_dct: species information dict[spc_name: spc_information] :type spc_dct: dict[str:dict] :param glob_dct: global information for all species dict[spc_name: spc_information] :type glob_dct: dict[str: dict] :param thy_dct: all of the theory information dict[thy name: inf] :type thy_dct: dict[str:dict] :param run_prefix: root-path to the run-filesystem :type run_prefix: str :param save_prefix: root-path to the save-filesystem :type save_prefix: str """ # Print Header ioprinter.info_message('Calculating Thermochem:') ioprinter.runlst(('SPC', 0, 0), spc_rlst) # ------------------------------------------------ # # PREPARE INFORMATION TO PASS TO THERMDRIVER TASKS # # ------------------------------------------------ # # Build a list of the species to calculate thermochem for loops below spc_mods = list(spc_mod_dct.keys()) # hack spc_mod_dct_i = spc_mod_dct[spc_mods[0]] split_rlst = split_unstable_full( pes_rlst, spc_rlst, spc_dct, spc_mod_dct_i, save_prefix) spc_queue = parser.rlst.spc_queue( tuple(split_rlst.values())[0], 'SPC') # Build the paths [(messpf, nasa)], models and levels for each spc thm_paths = thermo_paths(spc_dct, spc_queue, spc_mods, run_prefix) # ----------------------------------- # # RUN THE REQUESTED THERMDRIVER TASKS # # ----------------------------------- # # Write and Run MESSPF inputs to generate the partition functions write_messpf_tsk = parser.run.extract_task('write_mess', therm_tsk_lst) if write_messpf_tsk is not None: ioprinter.messpf('write_header') spc_mods, pes_mod = parser.models.extract_models(write_messpf_tsk) for idx, spc_name in enumerate(spc_queue): print('write test {}'.format(spc_name)) for spc_mod in spc_mods: messpf_inp_str = thmroutines.qt.make_messpf_str( pes_mod_dct[pes_mod]['therm_temps'], spc_dct, spc_name, pes_mod_dct[pes_mod], spc_mod_dct[spc_mod], run_prefix, save_prefix) ioprinter.messpf('input_string') ioprinter.info_message(messpf_inp_str) autorun.write_input( thm_paths[idx][spc_mod][0], messpf_inp_str, input_name='pf.inp') # Run the MESSPF files that have been written run_messpf_tsk = parser.run.extract_task('run_mess', therm_tsk_lst) if run_messpf_tsk is not None: spc_mod, pes_mod = parser.models.extract_models(run_messpf_tsk) spc_mods = parser.models.split_model(spc_mod[0]) ioprinter.messpf('run_header') for idx, spc_name in enumerate(spc_queue): _spc_mods, coeffs, operators = spc_mods # Run MESSPF for all requested models, combine the PFS at the end ioprinter.message('Run MESSPF: {}'.format(spc_name), newline=1) _pfs = [] for spc_mod in _spc_mods: autorun.run_script( autorun.SCRIPT_DCT['messpf'], thm_paths[idx][spc_mod][0]) _pfs.append( reader.mess.messpf(thm_paths[idx][spc_mod][0])) final_pf = thermfit.pf.combine(_pfs, coeffs, operators) # need to clean thm path build tdx = len(spc_mods) spc_info = sinfo.from_dct(spc_dct[spc_name]) spc_fml = automol.inchi.formula_string(spc_info[0]) thm_prefix = [spc_fml, automol.inchi.inchi_key(spc_info[0])] thm_paths[idx]['final'] = ( job_path(run_prefix, 'MESS', 'PF', thm_prefix, locs_idx=tdx), job_path(run_prefix, 'THERM', 'NASA', thm_prefix, locs_idx=tdx) ) writer.mess.output( fstring(spc_dct[spc_name]['inchi']), final_pf, thm_paths[idx]['final'][0], filename='pf.dat') # Use MESS partition functions to compute thermo quantities run_fit_tsk = parser.run.extract_task('run_fits', therm_tsk_lst) if run_fit_tsk is not None: spc_mods, pes_mod = parser.models.extract_models(run_fit_tsk) pes_mod_dct_i = pes_mod_dct[pes_mod] ioprinter.nasa('header') chn_basis_ene_dct = {} for idx, spc_name in enumerate(spc_queue): # Take species model and add it to the chn_basis_ene dct spc_mod = spc_mods[0] spc_mod_dct_i = spc_mod_dct[spc_mod] if spc_mod not in chn_basis_ene_dct: chn_basis_ene_dct[spc_mod] = {} # Get the reference scheme and energies (ref in different place) ref_scheme = pes_mod_dct_i['therm_fit']['ref_scheme'] ref_enes = pes_mod_dct_i['therm_fit']['ref_enes'] # Determine info about the basis species used in thermochem calcs basis_dct, uniref_dct = thermfit.prepare_refs( ref_scheme, spc_dct, (spc_name,)) # Get the basis info for the spc of interest spc_basis, coeff_basis = basis_dct[spc_name] # Get the energies for the spc and its basis ene_basis = [] energy_missing = False for spc_basis_i in spc_basis: if spc_basis_i in chn_basis_ene_dct[spc_mod]: ioprinter.message( 'Energy already found for basis species: ' + spc_basis_i) ene_basis.append(chn_basis_ene_dct[spc_mod][spc_basis_i]) else: ioprinter.message( 'Energy will be determined for basis species: ' + spc_basis_i) energy_missing = True if not energy_missing: pf_filesystems = filesys.models.pf_filesys( spc_dct[spc_name], spc_mod_dct_i, run_prefix, save_prefix, saddle=False) ene_spc = ene.read_energy( spc_dct[spc_name], pf_filesystems, spc_mod_dct_i, run_prefix, read_ene=True, read_zpe=True, saddle=False) else: ene_spc, ene_basis = thmroutines.basis.basis_energy( spc_name, spc_basis, uniref_dct, spc_dct, spc_mod_dct_i, run_prefix, save_prefix) for spc_basis_i, ene_basis_i in zip(spc_basis, ene_basis): chn_basis_ene_dct[spc_mod][spc_basis_i] = ene_basis_i # Calculate and store the 0 K Enthalpy hf0k = thermfit.heatform.calc_hform_0k( ene_spc, ene_basis, spc_basis, coeff_basis, ref_set=ref_enes) spc_dct[spc_name]['Hfs'] = [hf0k] # Write the NASA polynomials in CHEMKIN format ckin_nasa_str = '' ckin_path = output_path('CKIN') for idx, spc_name in enumerate(spc_queue): ioprinter.nasa('calculate', spc_name) # Write the header describing the models used in thermo calcs ckin_nasa_str += writer.ckin.model_header(spc_mods, spc_mod_dct) # Build and write the NASA polynomial in CHEMKIN-format string # Call dies if you haven't run "write mess" task ckin_nasa_str += thmroutines.nasapoly.build_polynomial( spc_name, spc_dct, thm_paths[idx]['final'][0], thm_paths[idx]['final'][1]) ckin_nasa_str += '\n\n' print('CKIN NASA STR\n') print(ckin_nasa_str) nasa7_params_all = chemkin_io.parser.thermo.create_spc_nasa7_dct( ckin_nasa_str) ioprinter.info_message( 'SPECIES\t\tH(0 K)[kcal/mol]\tH(298 K)[kcal/mol]\t' + 'S(298 K)[cal/mol K]\n') for spc_name in nasa7_params_all: nasa7_params = nasa7_params_all[spc_name] ht0 = spc_dct[spc_name]['Hfs'][0] ht298 = mechanalyzer.calculator.thermo.enthalpy( nasa7_params, 298.15) st298 = mechanalyzer.calculator.thermo.entropy( nasa7_params, 298.15) ioprinter.info_message( '{}\t{:3.2f}\t{:3.2f}\t{:3.2f}'.format( spc_name, ht0, ht298/1000., st298)) # Write all of the NASA polynomial strings writer.ckin.write_nasa_file(ckin_nasa_str, ckin_path)