예제 #1
0
def nasa_polynomial_task(mdriver_path, spc_locs_dct, thm_paths_dct, spc_dct,
                         spc_mod_dct, spc_mods, sort_info_lst, ref_scheme):
    """ generate the nasa polynomials
    """
    ckin_nasa_str_dct = {}
    ckin_nasa_str_dct[0] = ''
    ckin_path = output_path('CKIN', prefix=mdriver_path)
    for spc_name in spc_locs_dct:
        for idx, spc_locs in enumerate(spc_locs_dct[spc_name], start=1):
            if idx not in ckin_nasa_str_dct:
                ckin_nasa_str_dct[idx] = ''
            spc_locs = tuple(spc_locs)
            ioprinter.nasa('calculate', spc_name)
            # for spc_mod in spc_mods:
            #     ioprinter.message('for: ', spc_locs, spc_mod)
            #     # Write the header describing the models used in thermo calcs
            #     ckin_nasa_str += writer.ckin.model_header(
            #         [spc_mod], spc_mod_dct, refscheme=ref_scheme)
            #     # Build and write NASA polynomial in CHEMKIN-format string
            #     # Call dies if you haven't run "write mess" task
            #     ckin_nasa_str += nasapoly.build_polynomial(
            #         spc_name, spc_dct,
            #         thm_paths_dct[spc_name][tuple(spc_locs)][spc_mod][0],
            #         thm_paths_dct[spc_name][tuple(spc_locs)][spc_mod][1],
            #         spc_locs=spc_locs, spc_mod=spc_mod)
            #     ckin_nasa_str += '\n\n'
            ioprinter.message('for: ', spc_locs, ' combined models')
            ckin_nasa_str_dct[idx] += writer.ckin.model_header(
                spc_mods,
                spc_mod_dct,
                sort_info_lst=sort_info_lst,
                refscheme=ref_scheme)
            ckin_nasa_str_dct[idx] += nasapoly.build_polynomial(
                spc_name,
                spc_dct,
                thm_paths_dct[spc_name][tuple(spc_locs)]['mod_total'][0],
                thm_paths_dct[spc_name][tuple(spc_locs)]['mod_total'][1],
                spc_locs_idx=idx - 1,
                spc_mod=','.join(spc_mods))
            ckin_nasa_str_dct[idx] += '\n\n'
            ioprinter.info_message('CKIN NASA STR\n')
            ioprinter.info_message(ckin_nasa_str_dct[idx])
        ioprinter.message('for combined rid cids:', spc_locs_dct[spc_name])
        ckin_nasa_str_dct[0] += writer.ckin.model_header(
            spc_mods,
            spc_mod_dct,
            sort_info_lst=sort_info_lst,
            refscheme=ref_scheme)
        ckin_nasa_str_dct[0] += nasapoly.build_polynomial(
            spc_name,
            spc_dct,
            thm_paths_dct[spc_name]['spc_total'][0],
            thm_paths_dct[spc_name]['spc_total'][1],
            spc_locs_idx='final',
            spc_mod=','.join(spc_mods))
        ckin_nasa_str_dct[0] += '\n\n'
        ioprinter.info_message('CKIN NASA STR\n')
        ioprinter.info_message(ckin_nasa_str_dct[0])
    return ckin_nasa_str_dct, ckin_path
예제 #2
0
def build_polynomial(spc_name, spc_dct, pf_path, nasa_path):
    """ Build a nasa polynomial
    """

    # Read the temperatures from the pf.dat file, check if viable
    temps = pfrunner.read_messpf_temps(pf_path)
    ioprinter.nasa('fit', temps=temps)

    ioprinter.generating('NASA polynomials', nasa_path)

    # Generate forumula
    spc_dct_i = spc_dct[spc_name]
    formula_str = automol.inchi.formula_string(spc_dct_i['inchi'])
    formula_dct = automol.inchi.formula(spc_dct_i['inchi'])
    hform0 = spc_dct_i['Hfs'][0]

    thermp_script_str = autorun.SCRIPT_DCT['thermp']
    pac99_script_str = autorun.SCRIPT_DCT['pac99'].format(formula_str)

    # Copy MESSPF output file to THERMP run dir and rename to pf.dat
    pf_str = ioformat.pathtools.read_file(pf_path, 'pf.dat')

    print('pf_path test:', pf_path)
    print('pf_str test:', pf_str)

    hform298, poly_str = autorun.thermo(
        thermp_script_str, pac99_script_str, nasa_path,
        pf_str, spc_name, formula_dct, hform0,
        enthalpyt=0.0, breakt=1000.0, convert=True)

    # Write the full CHEMKIN strings
    ckin_str = writer.ckin.nasa_polynomial(hform0, hform298, poly_str)
    full_ckin_str = '\n' + ckin_str
    # Print thermo
    

    return full_ckin_str
예제 #3
0
def build_polynomial(spc_name,
                     spc_dct,
                     pf_path,
                     nasa_path,
                     spc_locs_idx=None,
                     spc_mod=None):
    """ For a given species: obtain partition function data read from a
        MESSPF output file currently existing in the RUN filesystem as well as
        the previously computed 0 K heat-of-formation from the species
        dictionary. Then use this to run ThermP and PAC99 in the RUN filesystem
        to generate a ChemKin-formatted 7-coefficient NASA polynomial.

        :param spc_name: mechanism name of species to write MESSPF input for
        :type spc_name: str
        :param spc_dct:
        :type spc_dct:
        :param pf_path: path to existing MESSPF file in RUN filesystem
        :type pf_path: str
        :param nasa_path: path to run ThermP+PAC99 in RUN filesystem
        :type nasa_path: str
        :rtype: str
    """

    # Read the temperatures from the pf.dat file, check if viable
    ioprinter.nasa('fit', path=pf_path)
    ioprinter.generating('NASA polynomials', nasa_path)

    # Generate forumula
    spc_dct_i = spc_dct[spc_name]
    formula_str = automol.inchi.formula_string(spc_dct_i['inchi'])
    formula_dct = automol.inchi.formula(spc_dct_i['inchi'])

    if spc_locs_idx == 'final':
        hform0 = spc_dct_i['Hfs']['final'][0]
        spc_label = spc_name
    elif spc_locs_idx is not None:
        hform0 = spc_dct_i['Hfs'][spc_locs_idx][spc_mod][0]
        spc_label = spc_name  # + '_{:g}'.format(spc_locs_idx)
        # spc_label = spc_name + '_' + spc_locs[1][:5]
    else:
        hform0 = spc_dct_i['Hfs'][0]
        spc_label = spc_name
    thermp_script_str = autorun.SCRIPT_DCT['thermp']
    pac99_script_str = autorun.SCRIPT_DCT['pac99'].format(formula_str)

    # Copy MESSPF output file to THERMP run dir and rename to pf.dat
    pf_str = ioformat.pathtools.read_file(pf_path, 'pf.dat')
    hform298, poly_str = autorun.thermo(thermp_script_str,
                                        pac99_script_str,
                                        nasa_path,
                                        pf_str,
                                        spc_label,
                                        formula_dct,
                                        hform0,
                                        enthalpyt=0.0,
                                        breakt=1000.0,
                                        convert=True)

    # Write the full CHEMKIN strings
    ckin_str = '\n' + writer.ckin.nasa_polynomial(hform0, hform298, poly_str)

    return ckin_str
예제 #4
0
def run(spc_rlst, therm_tsk_lst, pes_mod_dct, spc_mod_dct, spc_dct, run_prefix,
        save_prefix):
    """ main driver for thermo run
    """

    # Print Header fo
    ioprinter.info_message('Calculating Thermochem:')
    ioprinter.runlst(('SPC', 0, 0), spc_rlst)

    # ------------------------------------------------ #
    # PREPARE INFORMATION TO PASS TO THERMDRIVER TASKS #
    # ------------------------------------------------ #

    # Build a list of the species to calculate thermochem for loops below
    spc_mods = list(spc_mod_dct.keys())  # hack
    split_spc_lst = split_unstable_spc(spc_rlst, spc_dct,
                                       spc_mod_dct[spc_mods[0]], save_prefix)
    spc_queue = parser.rlst.spc_queue('spc', tuple(split_spc_lst.values())[0])

    # Build the paths [(messpf, nasa)], models and levels for each spc
    thm_paths = thermo_paths(spc_dct, spc_queue, spc_mods, run_prefix)

    # ----------------------------------- #
    # RUN THE REQUESTED THERMDRIVER TASKS #
    # ----------------------------------- #

    # Write and Run MESSPF inputs to generate the partition functions
    write_messpf_tsk = parser.run.extract_task('write_mess', therm_tsk_lst)
    if write_messpf_tsk is not None:

        ioprinter.messpf('write_header')

        spc_mods, pes_mod = parser.models.extract_models(write_messpf_tsk)

        for idx, spc_name in enumerate(spc_queue):
            print('write test {}'.format(spc_name))
            for spc_mod in spc_mods:
                messpf_inp_str = thmroutines.qt.make_messpf_str(
                    pes_mod_dct[pes_mod]['therm_temps'], spc_dct, spc_name,
                    pes_mod_dct[pes_mod], spc_mod_dct[spc_mod], run_prefix,
                    save_prefix)
                ioprinter.messpf('input_string')
                ioprinter.info_message(messpf_inp_str)
                autorun.write_input(thm_paths[idx][spc_mod][0],
                                    messpf_inp_str,
                                    input_name='pf.inp')

    # Run the MESSPF files that have been written
    run_messpf_tsk = parser.run.extract_task('run_mess', therm_tsk_lst)
    if run_messpf_tsk is not None:

        spc_mod, pes_mod = parser.models.extract_models(run_messpf_tsk)
        spc_mods = parser.models.split_model(spc_mod[0])

        ioprinter.messpf('run_header')
        for idx, spc_name in enumerate(spc_queue):

            _spc_mods, coeffs, operators = spc_mods

            # Run MESSPF for all requested models, combine the PFS at the end
            ioprinter.message('Run MESSPF: {}'.format(spc_name), newline=1)
            _pfs = []
            for spc_mod in _spc_mods:
                autorun.run_script(autorun.SCRIPT_DCT['messpf'],
                                   thm_paths[idx][spc_mod][0])
                _pfs.append(
                    pfrunner.mess.read_messpf(thm_paths[idx][spc_mod][0]))
            final_pf = pfrunner.mess.combine_pfs(_pfs, coeffs, operators)

            # need to clean thm path build
            tot_idx = len(spc_mods)
            spc_info = sinfo.from_dct(spc_dct[spc_name])
            spc_fml = automol.inchi.formula_string(spc_info[0])
            thm_prefix = [spc_fml, automol.inchi.inchi_key(spc_info[0])]
            thm_paths[idx]['final'] = (job_path(run_prefix,
                                                'MESS',
                                                'PF',
                                                thm_prefix,
                                                locs_idx=tot_idx),
                                       job_path(run_prefix,
                                                'THERM',
                                                'NASA',
                                                thm_prefix,
                                                locs_idx=tot_idx))
            pfrunner.mess.write_mess_output(fstring(
                spc_dct[spc_name]['inchi']),
                                            final_pf,
                                            thm_paths[idx]['final'][0],
                                            filename='pf.dat')

    # Use MESS partition functions to compute thermo quantities
    run_fit_tsk = parser.run.extract_task('run_fits', therm_tsk_lst)
    if run_fit_tsk is not None:

        spc_mods, pes_mod = parser.models.extract_models(run_fit_tsk)
        pes_mod_dct_i = pes_mod_dct[pes_mod]

        ioprinter.nasa('header')
        chn_basis_ene_dct = {}
        for idx, spc_name in enumerate(spc_queue):

            # Take species model and add it to the chn_basis_ene dct
            spc_mod = spc_mods[0]
            spc_mod_dct_i = spc_mod_dct[spc_mod]
            if spc_mod not in chn_basis_ene_dct:
                chn_basis_ene_dct[spc_mod] = {}

            # Get the reference scheme and energies (ref in different place)
            ref_scheme = pes_mod_dct_i['therm_fit']['ref_scheme']
            ref_enes = pes_mod_dct_i['therm_fit']['ref_enes']

            # Determine info about the basis species used in thermochem calcs
            basis_dct, uniref_dct = thmroutines.basis.prepare_refs(
                ref_scheme, spc_dct, [[spc_name, None]], run_prefix,
                save_prefix)

            # Get the basis info for the spc of interest
            spc_basis, coeff_basis = basis_dct[spc_name]

            # Get the energies for the spc and its basis
            ene_basis = []
            energy_missing = False
            for spc_basis_i in spc_basis:
                if spc_basis_i in chn_basis_ene_dct[spc_mod]:
                    ioprinter.message(
                        'Energy already found for basis species: ' +
                        spc_basis_i)
                    ene_basis.append(chn_basis_ene_dct[spc_mod][spc_basis_i])
                else:
                    ioprinter.message(
                        'Energy will be determined for basis species: ' +
                        spc_basis_i)
                    energy_missing = True
            if not energy_missing:
                pf_filesystems = filesys.models.pf_filesys(spc_dct[spc_name],
                                                           spc_mod_dct_i,
                                                           run_prefix,
                                                           save_prefix,
                                                           saddle=False)
                ene_spc = ene.read_energy(spc_dct[spc_name],
                                          pf_filesystems,
                                          spc_mod_dct_i,
                                          run_prefix,
                                          read_ene=True,
                                          read_zpe=True,
                                          saddle=False)
            else:
                ene_spc, ene_basis = thmroutines.basis.basis_energy(
                    spc_name, spc_basis, uniref_dct, spc_dct, spc_mod_dct_i,
                    run_prefix, save_prefix)
                for spc_basis_i, ene_basis_i in zip(spc_basis, ene_basis):
                    chn_basis_ene_dct[spc_mod][spc_basis_i] = ene_basis_i

            # Calculate and store the 0 K Enthalpy
            hf0k = thmroutines.heatform.calc_hform_0k(ene_spc,
                                                      ene_basis,
                                                      spc_basis,
                                                      coeff_basis,
                                                      ref_set=ref_enes)
            spc_dct[spc_name]['Hfs'] = [hf0k]

        # Write the NASA polynomials in CHEMKIN format
        ckin_nasa_str = ''
        ckin_path = output_path('CKIN')
        for idx, spc_name in enumerate(spc_queue):

            ioprinter.nasa('calculate', spc_name)

            # Write the header describing the models used in thermo calcs
            ckin_nasa_str += writer.ckin.model_header(spc_mods, spc_mod_dct)

            # Build and write the NASA polynomial in CHEMKIN-format string
            # Call dies if you haven't run "write mess" task
            ckin_nasa_str += thmroutines.nasapoly.build_polynomial(
                spc_name, spc_dct, thm_paths[idx]['final'][0],
                thm_paths[idx]['final'][1])
            ckin_nasa_str += '\n\n'

            print(ckin_nasa_str)
        nasa7_params_all = chemkin_io.parser.thermo.create_spc_nasa7_dct(
            ckin_nasa_str)
        # print('ckin_nasa_str test', ckin_nasa_str)
        ioprinter.info_message(
            'SPECIES           H(0 K)  H(298 K)  S(298 K)  Cp(300 K) Cp(500 K) Cp(1000 K) Cp(1500 K)\n'
        )
        ioprinter.info_message(
            '                 kcal/mol kcal/mol cal/(mol K) ... \n')
        for spc_name in nasa7_params_all:
            nasa7_params = nasa7_params_all[spc_name]
            whitespace = 18 - len(spc_name)
            h0 = spc_dct[spc_name]['Hfs'][0]
            h298 = mechanalyzer.calculator.thermo.enthalpy(
                nasa7_params, 298.15) / 1000.
            s298 = mechanalyzer.calculator.thermo.entropy(nasa7_params, 298.15)
            cp300 = mechanalyzer.calculator.thermo.heat_capacity(
                nasa7_params, 300)
            cp500 = mechanalyzer.calculator.thermo.heat_capacity(
                nasa7_params, 500)
            cp1000 = mechanalyzer.calculator.thermo.heat_capacity(
                nasa7_params, 1000)
            cp1500 = mechanalyzer.calculator.thermo.heat_capacity(
                nasa7_params, 1500)
            whitespace = whitespace * ' '
            ioprinter.info_message(
                '{}{}{:>7.2f}{:>9.2f}{:>9.2f}{:>9.2f}{:>9.2f}{:>9.2f}{:>9.2f}'.
                format(spc_name, whitespace, h0, h298, s298, cp300, cp500,
                       cp1000, cp1500))

        # Write all of the NASA polynomial strings
        writer.ckin.write_nasa_file(ckin_nasa_str, ckin_path)
예제 #5
0
def run(pes_rlst, spc_rlst, therm_tsk_lst, pes_mod_dct, spc_mod_dct, spc_dct,
        thy_dct, run_prefix, save_prefix, mdriver_path):
    """ Executes all thermochemistry tasks.

        :param pes_rlst: species from PESs to run
            [(PES formula, PES idx, SUP-PES idx)
            (CHANNEL idx, (REACS, PRODS))
        :type pes_rlst: tuple(dict[str: dict])
        :param spc_rlst: lst of species to run
        :type spc_rlst: tuple(dict[str: dict])
        :param es_tsk_lst: list of the electronic structure tasks
        :type es_tsk_lst: tuple(tuple(str, str, dict))
        :param spc_dct: species information
        :type spc_dct: dict[str:dict]
        :param glob_dct: global information for all species
        :type glob_dct: dict[str: dict]
        :param thy_dct: all of the theory information
        :type thy_dct: dict[str:dict]
        :param run_prefix: root-path to the run-filesystem
        :type run_prefix: str
        :param save_prefix: root-path to the save-filesystem
        :type save_prefix: str
        :param mdriver_path: path where mechdriver is running
        :type mdriver_path: str
    """

    # Print Header
    ioprinter.info_message('Calculating Thermochem:')
    ioprinter.runlst(list(spc_rlst.keys())[0], list(spc_rlst.values())[0])

    # ------------------------------------------------ #
    # PREPARE INFORMATION TO PASS TO THERMDRIVER TASKS #
    # ------------------------------------------------ #

    # Parse Tasks
    write_messpf_tsk = parser.run.extract_task('write_mess', therm_tsk_lst)
    run_messpf_tsk = parser.run.extract_task('run_mess', therm_tsk_lst)
    run_fit_tsk = parser.run.extract_task('run_fits', therm_tsk_lst)

    # Build a list of the species to calculate thermochem for loops below
    # and build the paths [(messpf, nasa)], models and levels for each spc
    cnf_range = write_messpf_tsk[-1]['cnf_range']
    sort_str = write_messpf_tsk[-1]['sort']
    spc_locs_dct, thm_paths_dct, sort_info_lst = _set_spc_queue(
        spc_mod_dct, pes_rlst, spc_rlst, spc_dct, thy_dct, save_prefix,
        run_prefix, cnf_range, sort_str)

    # ----------------------------------- #
    # RUN THE REQUESTED THERMDRIVER TASKS #
    # ----------------------------------- #

    # Write and Run MESSPF inputs to generate the partition functions
    if write_messpf_tsk is not None:
        thermo_tasks.write_messpf_task(write_messpf_tsk, spc_locs_dct, spc_dct,
                                       pes_mod_dct, spc_mod_dct, run_prefix,
                                       save_prefix, thm_paths_dct)

    # Run the MESSPF files that have been written
    if run_messpf_tsk is not None:
        thermo_tasks.run_messpf_task(run_messpf_tsk, spc_locs_dct, spc_dct,
                                     thm_paths_dct)

    # Use MESS partition functions to compute thermo quantities
    if run_fit_tsk is not None:

        ioprinter.nasa('header')
        spc_mods, pes_mod = parser.models.extract_models(run_fit_tsk)
        pes_mod_dct_i = pes_mod_dct[pes_mod]

        # Get the reference scheme and energies (ref in different place)
        ref_scheme = pes_mod_dct_i['therm_fit']['ref_scheme']
        ref_enes = pes_mod_dct_i['therm_fit']['ref_enes']
        spc_dct = thermo_tasks.get_heats_of_formation(spc_locs_dct, spc_dct,
                                                      spc_mods, spc_mod_dct,
                                                      ref_scheme, ref_enes,
                                                      run_prefix, save_prefix)

        # This has to happen down here because the weights rely on
        # The heats of formation
        print('in run_fit_tsk for thermo_driver boltzmann')
        spc_dct = thermo_tasks.produce_boltzmann_weighted_conformers_pf(
            run_messpf_tsk, spc_locs_dct, spc_dct, thm_paths_dct)

        # Write the NASA polynomials in CHEMKIN format
        ckin_nasa_str_dct, ckin_path = thermo_tasks.nasa_polynomial_task(
            mdriver_path, spc_locs_dct, thm_paths_dct, spc_dct, spc_mod_dct,
            spc_mods, sort_info_lst, ref_scheme)

        for idx, nasa_str in ckin_nasa_str_dct.items():
            ioprinter.print_thermo(spc_dct, nasa_str, spc_locs_dct, idx,
                                   spc_mods[0])

            # Write all of the NASA polynomial strings
            writer.ckin.write_nasa_file(nasa_str, ckin_path, idx=idx)
예제 #6
0
def run(pes_rlst, spc_rlst,
        therm_tsk_lst,
        pes_mod_dct, spc_mod_dct,
        spc_dct,
        run_prefix, save_prefix):
    """ Executes all thermochemistry tasks.

        :param pes_rlst: species from PESs to run
            [(PES formula, PES idx, SUP-PES idx)
            (CHANNEL idx, (REACS, PRODS))
        :type pes_rlst: tuple(dict[str: dict])
        :param spc_rlst: lst of species to run
        :type spc_rlst: tuple(dict[str: dict])
        :param es_tsk_lst: list of the electronic structure tasks
            tuple(tuple(obj, tsk, keyword_dict))
        :type es_tsk_lst: tuple(tuple(str, str, dict))
        :param spc_dct: species information
            dict[spc_name: spc_information]
        :type spc_dct: dict[str:dict]
        :param glob_dct: global information for all species
            dict[spc_name: spc_information]
        :type glob_dct: dict[str: dict]
        :param thy_dct: all of the theory information
            dict[thy name: inf]
        :type thy_dct: dict[str:dict]
        :param run_prefix: root-path to the run-filesystem
        :type run_prefix: str
        :param save_prefix: root-path to the save-filesystem
        :type save_prefix: str
    """

    # Print Header
    ioprinter.info_message('Calculating Thermochem:')
    ioprinter.runlst(('SPC', 0, 0), spc_rlst)

    # ------------------------------------------------ #
    # PREPARE INFORMATION TO PASS TO THERMDRIVER TASKS #
    # ------------------------------------------------ #

    # Build a list of the species to calculate thermochem for loops below
    spc_mods = list(spc_mod_dct.keys())  # hack
    spc_mod_dct_i = spc_mod_dct[spc_mods[0]]
    split_rlst = split_unstable_full(
        pes_rlst, spc_rlst, spc_dct, spc_mod_dct_i, save_prefix)
    spc_queue = parser.rlst.spc_queue(
        tuple(split_rlst.values())[0], 'SPC')

    # Build the paths [(messpf, nasa)], models and levels for each spc
    thm_paths = thermo_paths(spc_dct, spc_queue, spc_mods, run_prefix)

    # ----------------------------------- #
    # RUN THE REQUESTED THERMDRIVER TASKS #
    # ----------------------------------- #

    # Write and Run MESSPF inputs to generate the partition functions
    write_messpf_tsk = parser.run.extract_task('write_mess', therm_tsk_lst)
    if write_messpf_tsk is not None:

        ioprinter.messpf('write_header')

        spc_mods, pes_mod = parser.models.extract_models(write_messpf_tsk)

        for idx, spc_name in enumerate(spc_queue):
            print('write test {}'.format(spc_name))
            for spc_mod in spc_mods:
                messpf_inp_str = thmroutines.qt.make_messpf_str(
                    pes_mod_dct[pes_mod]['therm_temps'],
                    spc_dct, spc_name,
                    pes_mod_dct[pes_mod], spc_mod_dct[spc_mod],
                    run_prefix, save_prefix)
                ioprinter.messpf('input_string')
                ioprinter.info_message(messpf_inp_str)
                autorun.write_input(
                    thm_paths[idx][spc_mod][0], messpf_inp_str,
                    input_name='pf.inp')

    # Run the MESSPF files that have been written
    run_messpf_tsk = parser.run.extract_task('run_mess', therm_tsk_lst)
    if run_messpf_tsk is not None:

        spc_mod, pes_mod = parser.models.extract_models(run_messpf_tsk)
        spc_mods = parser.models.split_model(spc_mod[0])

        ioprinter.messpf('run_header')
        for idx, spc_name in enumerate(spc_queue):

            _spc_mods, coeffs, operators = spc_mods

            # Run MESSPF for all requested models, combine the PFS at the end
            ioprinter.message('Run MESSPF: {}'.format(spc_name), newline=1)
            _pfs = []
            for spc_mod in _spc_mods:
                autorun.run_script(
                   autorun.SCRIPT_DCT['messpf'],
                   thm_paths[idx][spc_mod][0])
                _pfs.append(
                    reader.mess.messpf(thm_paths[idx][spc_mod][0]))
            final_pf = thermfit.pf.combine(_pfs, coeffs, operators)

            # need to clean thm path build
            tdx = len(spc_mods)
            spc_info = sinfo.from_dct(spc_dct[spc_name])
            spc_fml = automol.inchi.formula_string(spc_info[0])
            thm_prefix = [spc_fml, automol.inchi.inchi_key(spc_info[0])]
            thm_paths[idx]['final'] = (
                job_path(run_prefix, 'MESS', 'PF', thm_prefix, locs_idx=tdx),
                job_path(run_prefix, 'THERM', 'NASA', thm_prefix, locs_idx=tdx)
            )
            writer.mess.output(
                fstring(spc_dct[spc_name]['inchi']),
                final_pf, thm_paths[idx]['final'][0],
                filename='pf.dat')

    # Use MESS partition functions to compute thermo quantities
    run_fit_tsk = parser.run.extract_task('run_fits', therm_tsk_lst)
    if run_fit_tsk is not None:

        spc_mods, pes_mod = parser.models.extract_models(run_fit_tsk)
        pes_mod_dct_i = pes_mod_dct[pes_mod]

        ioprinter.nasa('header')
        chn_basis_ene_dct = {}
        for idx, spc_name in enumerate(spc_queue):

            # Take species model and add it to the chn_basis_ene dct
            spc_mod = spc_mods[0]
            spc_mod_dct_i = spc_mod_dct[spc_mod]
            if spc_mod not in chn_basis_ene_dct:
                chn_basis_ene_dct[spc_mod] = {}

            # Get the reference scheme and energies (ref in different place)
            ref_scheme = pes_mod_dct_i['therm_fit']['ref_scheme']
            ref_enes = pes_mod_dct_i['therm_fit']['ref_enes']

            # Determine info about the basis species used in thermochem calcs
            basis_dct, uniref_dct = thermfit.prepare_refs(
                ref_scheme, spc_dct, (spc_name,))

            # Get the basis info for the spc of interest
            spc_basis, coeff_basis = basis_dct[spc_name]

            # Get the energies for the spc and its basis
            ene_basis = []
            energy_missing = False
            for spc_basis_i in spc_basis:
                if spc_basis_i in chn_basis_ene_dct[spc_mod]:
                    ioprinter.message(
                        'Energy already found for basis species: '
                        + spc_basis_i)
                    ene_basis.append(chn_basis_ene_dct[spc_mod][spc_basis_i])
                else:
                    ioprinter.message(
                        'Energy will be determined for basis species: '
                        + spc_basis_i)
                    energy_missing = True
            if not energy_missing:
                pf_filesystems = filesys.models.pf_filesys(
                    spc_dct[spc_name], spc_mod_dct_i,
                    run_prefix, save_prefix, saddle=False)
                ene_spc = ene.read_energy(
                    spc_dct[spc_name], pf_filesystems, spc_mod_dct_i,
                    run_prefix, read_ene=True, read_zpe=True, saddle=False)
            else:
                ene_spc, ene_basis = thmroutines.basis.basis_energy(
                    spc_name, spc_basis, uniref_dct, spc_dct,
                    spc_mod_dct_i,
                    run_prefix, save_prefix)
                for spc_basis_i, ene_basis_i in zip(spc_basis, ene_basis):
                    chn_basis_ene_dct[spc_mod][spc_basis_i] = ene_basis_i

            # Calculate and store the 0 K Enthalpy
            hf0k = thermfit.heatform.calc_hform_0k(
                ene_spc, ene_basis, spc_basis, coeff_basis, ref_set=ref_enes)
            spc_dct[spc_name]['Hfs'] = [hf0k]

        # Write the NASA polynomials in CHEMKIN format
        ckin_nasa_str = ''
        ckin_path = output_path('CKIN')
        for idx, spc_name in enumerate(spc_queue):

            ioprinter.nasa('calculate', spc_name)

            # Write the header describing the models used in thermo calcs
            ckin_nasa_str += writer.ckin.model_header(spc_mods, spc_mod_dct)

            # Build and write the NASA polynomial in CHEMKIN-format string
            # Call dies if you haven't run "write mess" task
            ckin_nasa_str += thmroutines.nasapoly.build_polynomial(
                spc_name, spc_dct,
                thm_paths[idx]['final'][0], thm_paths[idx]['final'][1])
            ckin_nasa_str += '\n\n'
        print('CKIN NASA STR\n')
        print(ckin_nasa_str)

        nasa7_params_all = chemkin_io.parser.thermo.create_spc_nasa7_dct(
            ckin_nasa_str)
        ioprinter.info_message(
            'SPECIES\t\tH(0 K)[kcal/mol]\tH(298 K)[kcal/mol]\t' +
            'S(298 K)[cal/mol K]\n')
        for spc_name in nasa7_params_all:
            nasa7_params = nasa7_params_all[spc_name]
            ht0 = spc_dct[spc_name]['Hfs'][0]
            ht298 = mechanalyzer.calculator.thermo.enthalpy(
                nasa7_params, 298.15)
            st298 = mechanalyzer.calculator.thermo.entropy(
                nasa7_params, 298.15)
            ioprinter.info_message(
                '{}\t{:3.2f}\t{:3.2f}\t{:3.2f}'.format(
                    spc_name, ht0, ht298/1000., st298))

        # Write all of the NASA polynomial strings
        writer.ckin.write_nasa_file(ckin_nasa_str, ckin_path)