from medacy.ner.pipelines import SystematicReviewPipeline from medacy.ner.model import Model from medacy.pipeline_components import MetaMap import logging,sys # print logs # logging.basicConfig(stream=sys.stdout,level=logging.DEBUG) #set level=logging.DEBUG for more information #entity types entities = ['CellLine','Dose','DoseDuration', 'DoseDurationUnits', 'DoseFrequency', 'DoseRoute', 'DoseUnits', 'Endpoint','EndpointUnitOfMeasure', 'GroupName', 'GroupSize', 'SampleSize', 'Sex', 'Species', 'Strain', 'TestArticle', 'TestArticlePurity', 'TestArticleVerification', 'TimeAtDose', 'TimeAtFirstDose', 'TimeAtLastDose', 'TimeEndpointAssessed', 'TimeUnits', 'Vehicle' ] # training_dataset, evaluation_dataset, meta_data = Dataset.load_external('medacy_dataset_smm4h_2019') training_dataset = Dataset('/home/mahendrand/VE/TAC/data_TAC') #set metamap path metamap = MetaMap(metamap_path="/home/share/programs/metamap/2016/public_mm/bin/metamap", convert_ascii=True) training_dataset.metamap(metamap) # pipeline = SystematicReviewPipeline(metamap=None, entities=meta_data['entities']) pipeline = SystematicReviewPipeline(metamap=metamap, entities=entities) model = Model(pipeline, n_jobs=1) #distribute documents between 30 processes during training and prediction model.fit(training_dataset) model.cross_validate(num_folds = 5, dataset = training_dataset, write_predictions=True) #location to store the clinical model model.dump('/home/mahendrand/VE/SMM4H/medaCy/medacy/clinical_model.pickle') #location to store the predictions #model.predict(training_dataset, prediction_directory='/home/mahendrand/VE/SMM4H/data_smmh4h/task2/training/dataset/metamap_predictions')
level=logging.DEBUG) #set level=logging.DEBUG for more information # entities = ['Form','Route','Frequency', 'Reason', 'Duration', 'Dosage', 'ADE', 'Strength', 'Drug' ] entities = ['Symptom', 'Drug'] # training_dataset, evaluation_dataset, meta_data = Dataset.load_external('medacy_dataset_smm4h_2019') training_dataset = Dataset('/home/mahendrand/VE/Data/N2C2/symptom') #training_dataset.set_data_limit(10) # pipeline = SystematicReviewPipeline(metamap=None, entities=meta_data['entities']) pipeline = ClinicalPipeline(metamap=None, entities=entities) model = Model( pipeline, n_jobs=1 ) #distribute documents between 30 processes during training and prediction # model.fit(training_dataset) model.cross_validate(num_folds=5, training_dataset=training_dataset, prediction_directory=True, groundtruth_directory=True) # model.dump('/home/mahendrand/VE/SMM4H/medaCy/medacy/clinical_model.pickle') # model.predict(training_dataset, prediction_directory='/home/mahendrand/VE/data_smmh4h/task2/training/metamap_predictions') # model.predict(training_dataset) # train_dataset, evaluation_dataset, meta_data = Dataset.load_external('medacy_dataset_smm4h_2019') # # print(train_dataset)