def __init__(self,mod_AE,ShapeData,NiterProjection,NiterGrad,GradType,OptimType,InterpFlag=False,periodicBnd=False,N_cov=0): super(Model_4DVarNN_GradFP, self).__init__() self.model_AE = mod_AE with torch.no_grad(): print('Optim type %d'%OptimType) self.OptimType = OptimType #self.NRes = int(NiterResidual) self.NRes = int(3) self.NProjFP = int(NiterProjection) self.NGrad = int(NiterGrad) self.Ncov = N_cov self.InterpFlag = InterpFlag self.periodicBnd = periodicBnd self.shape = ShapeData # init median pooling self.median_pooling = MedianPool2d() # Define Solver type according to OptimType ## Gradient-based minimization using a fixed-step descent if OptimType == 0: self.model_Grad = model_GradUpdate0(replace_tup_at_idx(self.shape,0,int(self.shape[0]/(self.Ncov+1))),GradType) ## Gradient-based minimization using a CNN using a (sub)gradient as inputs elif OptimType == 1: self.model_Grad = model_GradUpdate1(replace_tup_at_idx(self.shape,0,int(self.shape[0]/(self.Ncov+1))),GradType,self.periodicBnd) ## Gradient-based minimization using a LSTM using a (sub)gradient as inputs elif OptimType == 2: self.model_Grad = model_GradUpdate2(replace_tup_at_idx(self.shape,0,int(self.shape[0]/(self.Ncov+1))),GradType,self.periodicBnd) elif OptimType == 3: self.model_Grad = model_GradUpdate2(replace_tup_at_idx(self.shape,0,int(self.shape[0]/(self.Ncov+1))),GradType,30)
def __init__(self): super(PatchTransformer, self).__init__() self.min_contrast = 0.8 self.max_contrast = 1.2 self.min_brightness = -0.1 self.max_brightness = 0.1 self.noise_factor = 0.10 self.minangle = -20 / 180 * math.pi self.maxangle = 20 / 180 * math.pi self.medianpooler = MedianPool2d(7, same=True) '''
def __init__(self, config, width, height): super(AdvPatch, self).__init__() self.config = config self.model_width = width self.model_height = height self.min_contrast = 0.8 self.max_contrast = 1.2 self.min_brightness = -0.1 self.max_brightness = 0.1 self.noise_factor = 0.10 self.medianpooler = MedianPool2d(3, same=True)
def __init__(self): super(PatchTransformer_glasses, self).__init__() self.min_contrast = 0.8 self.max_contrast = 1.2 self.min_brightness = -0.1 self.max_brightness = 0.1 self.noise_factor = 0.10 self.minangle = -10 / 180 * math.pi self.maxangle = 10 / 180 * math.pi self.medianpooler = MedianPool2d( 7, same=True) # kernel_size = 7? see again
def __init__(self): super(PatchTransformer, self).__init__() # os.environ['CUDA_VISIBLE_DEVICES'] = '3' # self.device = 'cuda:3' if torch.cuda.is_available() else 'cpu' self.min_contrast = 0.8 self.max_contrast = 1.2 self.min_brightness = -0.1 self.max_brightness = 0.1 self.noise_factor = 0.10 self.minangle = -20 / 180 * math.pi self.maxangle = 20 / 180 * math.pi self.medianpooler = MedianPool2d( 7, same=True) # kernel_size = 7? see again '''
def __init__(self, config): super(RenderModel, self).__init__() self.config = config self.min_contrast = 0.8 self.max_contrast = 1.2 self.min_brightness = -0.1 self.max_brightness = 0.1 self.noise_factor = 0.10 # if self.config.cuda is not '-1': # torch.cuda.set_device(self.config.cuda) # self.device = torch.device('cuda') # else: # self.device = torch.device('cpu') # if self.config.consistent: # self.grad_textures = grad_textutres.unsqueeze(-2).unsqueeze(-2).unsqueeze(-2)\ # .expand(self.config.depth * self.config.width * self.config.height, 4, 4, 4, 3) # else: # self.grad_textures = grad_textutres # self.grad_textures = grad_textutres # self.grad_textures = grad_textutres.expand(self.config.depth * self.config.width * self.config.height, # 4, 4, 4, 3) self.darknet_model = Darknet(self.config.cfgfile) self.darknet_model.load_weights(self.config.weightfile) self.darknet_model = self.darknet_model.eval().cuda() # for p in self.darknet_model.parameters(): # p.requires_grad = False # self.cubic = nn.Parameter(torch.full((1, 4, 4, 4, 3), 0.5).cuda()) # self.Xembedding = torch.nn.Embedding(100, 256) # self.Yembedding = torch.nn.Embedding(100, 256) # self.Zembedding = torch.nn.Embedding(100, 256) # self.linear1 = nn.Linear(768, 192) # self.linear2 = nn.Linear(256, 64) # self.linear3 = nn.Linear(256, 64) # self.linear4 = nn.Linear(192, 192) # self.softmax = nn.Softmax(dim=2) # self.convtranspose = nn.ConvTranspose3d(3, 3, (3, 3, 3), stride=1) self.prob_extractor = MaxProbExtractor(0, 80).cuda() self.nps_calculator = NPSCalculator(self.config.printfile, self.config.image_size).cuda() self.total_variation = TotalVariation().cuda() self.medianpooler = MedianPool2d(7, same=True) renderer = nr.Renderer(camera_mode='look_at') renderer.perspective = False renderer.light_intensity_directional = 0.0 renderer.light_intensity_ambient = 1.0 self.renderer = renderer