예제 #1
0
def eval():
    print('\nEval')
    net.eval()
    global dice_score
    global ite
    global count
    global num_sym
    target_boxes = testset.boxes
    #	print('target_boxes',target_boxes)
    target_img = create_binaryImage(target_boxes, False)
    #	for i in range(2):
    #		img = Image.fromarray(target_img[i])
    #		img.show()
    #	pdb.set_trace()
    for batch_idx, (images, loc_targets,
                    conf_targets) in enumerate(testloader):
        if use_cuda:
            images = images.cuda()
            loc_targets = loc_targets.cuda()
            conf_targets = conf_targets.cuda()

        images = Variable(images, volatile=True)
        #		loc_targets = Variable(loc_targets)
        #		conf_targets = Variable(conf_targets)

        loc_preds, conf_preds = net(images)

        data_encoder = DataEncoder()
        #		pdb.set_trace()
        conf_preds_list = []
        for i in range(batch_size):
            s_conf = F.softmax(conf_preds[i]).data
            conf_preds_list.append(s_conf)
#		pdb.set_trace()
        try:
            boxes, labels, scores = data_encoder.decodeforbatch(
                loc_preds.data, conf_preds_list)

            #			print('eloc', loc_preds.data)
            #			print('esoftmax', conf_preds_list)
            predicted_img = create_binaryImage(boxes)

            for i in range(batch_size):
                dice_score += binary.dc(predicted_img[i],
                                        target_img[batch_idx * batch_size + i])
                ite += 1
                print('[I %d]: %.5f' %
                      (ite,
                       binary.dc(predicted_img[i],
                                 target_img[batch_idx * batch_size + i])))
#				print(binary.dc(predicted_img[i],target_img[batch_idx + i]))
#				img = Image.fromarray(target_img[batch_idx + i])
#				img.show('target')
#				imgg = Image.fromarray(predicted_img[batch_idx + i])
#				imgg.show('predict')
        except:
            print('err')
예제 #2
0
def do(argv):

    segResults_path = argv[0]
    references_path = argv[1]
    num_classes = argv[2]

    results = listdir(segResults_path)
    results.sort(key=lambda f: int(filter(str.isdigit, f)))
    references = listdir(references_path)
    references.sort(key=lambda f: int(filter(str.isdigit, f)))

    pack = zip(results, references)

    res = 1
    for resultname, referencename in pack:
        result = nib.load(join(segResults_path, resultname)).get_data()
        print('result name: ', resultname)
        print('reference name: ', referencename)
        reference = nib.load(join(references_path, referencename)).get_data()

        reference = reference.reshape(result.shape)
        print("ASSD: ", mmb.assd(result, reference, voxelspacing=res))

        Assd_array = []
        Dice_array = []
        print(num_classes)
        for res_c, ref_c in zip(
                range(num_classes), range(num_classes)
        ):  #or some specific class labels, e.g., zip([2,3,4], [2,3,4])
            dc = mmb.dc(result == res_c, reference == ref_c)
            assd = mmb.assd(result == res_c,
                            reference == ref_c,
                            voxelspacing=res)
            Assd_array.append(assd)
            Dice_array.append(dc)

        for i in xrange(0, len(Dice_array)):
            print('Dice score of class_{}'.format(i + 1), Dice_array[i])

        for i in xrange(0, len(Assd_array)):
            print('ASSD score  of class_{}'.format(i + 1), Assd_array[i])

        #print("obj_assd: ",obj_assd(result,reference))
        #print("ASD: ", asd(result,reference))
        #print("ASD: ", asd(reference,result))

#print("HD: ", hd(result,reference))
        print("Dice: ", mmb.dc(result, reference))
예제 #3
0
파일: evaluate.py 프로젝트: gmaher/tcl_code
def get_outputs(seg, seg_truth):
    print seg.shape, seg_truth.shape
    seg_thresh = utility.threshold(seg,THRESHOLD)
    print seg_thresh.shape
    contour = utility.listSegToContours(seg_thresh, meta_test[1,:],
        meta_test[0,:], ISOVALUE)
    errs = utility.listAreaOverlapError(contour, contours_test)
    thresh,ts = utility.cum_error_dist(errs,DX)
    roc = roc_curve(np.ravel(seg_truth),np.ravel(seg), pos_label=1)
    pr = precision_recall_curve(np.ravel(seg_truth),np.ravel(seg), pos_label=1)
    dorf = []
    emd = []
    asdl = []
    dice = []
    prec = []
    for i in range(len(seg_truth)):
        if np.sum(seg_thresh[i,:,:]) > 0.1 and np.sum(seg_truth[i,:,:,0]) > 0.1:
            e= hd(seg_thresh[i,:,:],seg_truth[i,:,:,0],meta_test[0,i][0])
            dorf.append(e)

            e_asd= assd(seg_thresh[i,:,:],seg_truth[i,:,:,0],meta_test[0,i][0])
            asdl.append(e_asd)
            # if np.sum(seg_thresh[i,:,:]) < 600 and np.sum(seg_truth[i,:,:,0]) < 600:
            #     print i,np.sum(seg_thresh[i,:,:]),np.sum(seg_truth[i,:,:,0])
            #     e_emd = utility.EMDSeg(seg_truth[i,:,:,0],seg_thresh[i,:,:], meta_test[0,i][0])
            #     emd.append(e_emd)

        edc = dc(seg_thresh[i,:,:],seg_truth[i,:,:,0])
        dice.append(edc)
        prec.append(precision(seg_thresh[i,:,:],seg_truth[i,:,:,0]))
    acc,mean_acc = calc_accuracy(seg, seg_truth)
    return (contour,errs,thresh,roc,pr,acc,mean_acc,dorf,dice, prec,asdl)
예제 #4
0
def update_eval_metrics(preds, labels, eval_metrics):

    if len(labels.shape) == 2:
        preds = np.expand_dims(preds, axis=0)
        labels = np.expand_dims(labels, axis=0)

    N = labels.shape[0]

    for i in range(N):
        pred = preds[i, :, :]
        label = labels[i, :, :]
        eval_metrics['dice score'].append(dc(pred, label))
        eval_metrics['precision'].append(precision(pred, label))
        eval_metrics['recall'].append(recall(pred, label))
        eval_metrics['sensitivity'].append(sensitivity(pred, label))
        eval_metrics['specificity'].append(specificity(pred, label))

        if np.sum(pred) > 0 and np.sum(label) > 0:
            eval_metrics['hausdorff'].append(hd(pred, label))
            eval_metrics['hausdorff 95%'].append(hd95(pred, label))
            eval_metrics['asd'].append(asd(pred, label))
            eval_metrics['assd'].append(assd(pred, label))
            eval_metrics['jaccard'].append(jc(pred, label))
        else:
            eval_metrics['hausdorff'].append('nan')
            eval_metrics['hausdorff 95%'].append('nan')
            eval_metrics['asd'].append('nan')
            eval_metrics['assd'].append('nan')
            eval_metrics['jaccard'].append('nan')

    return eval_metrics
예제 #5
0
def metrics2(img_gt, img_pred, apply_hd=False, apply_asd=False):
    """
    evaluate the models on mmwhs data in batches
    :param img_gt: the ground truth
    :param img_pred: the prediction
    :param apply_hd: whether to evaluate Hausdorff Distance
    :param apply_asd: whether to evaluate Average Surface Distance
    :return:
    """
    if img_gt.ndim != img_pred.ndim:
        raise ValueError("The arrays 'img_gt' and 'img_pred' should have the "
                         "same dimension, {} against {}".format(img_gt.ndim,
                                                                img_pred.ndim))
    res = {}
    class_name = ["myo", "la", "lv", "aa"]
    # Loop on each classes of the input images
    for c, cls_name in zip([1, 2, 3, 4], class_name) :

        gt_c_i = np.where(img_gt == c, 1, 0)
        pred_c_i = np.where(img_pred == c, 1, 0)

        # Compute the Dice
        dice = dc(gt_c_i, pred_c_i)
        h_d, a_sd = 0, 0
        if apply_hd:
            h_d = hd(gt_c_i, pred_c_i)
        if apply_asd:
            a_sd = asd (gt_c_i, pred_c_i)
        res[cls_name] = [dice, h_d, a_sd]
    return res
예제 #6
0
def metrics(img_gt, img_pred, ifhd=True, ifasd=True):
    from medpy.metric.binary import hd, dc, asd
    if img_gt.ndim != img_pred.ndim:
        raise ValueError("The arrays 'img_gt' and 'img_pred' should have the "
                         "same dimension, {} against {}".format(
                             img_gt.ndim, img_pred.ndim))

    res = []
    cat = {'Myo', 'LA-blood', 'LV-blood', 'AA'}
    for c in range(len(cat)):
        # Copy the gt image to not alterate the input
        gt_c_i = np.where(img_gt == c + 1, 1, 0)
        # Copy the pred image to not alterate the input
        pred_c_i = np.where(img_pred == c + 1, 1, 0)
        # Clip the value to compute the volumes
        gt_c_i = np.clip(gt_c_i, 0, 1)
        pred_c_i = np.clip(pred_c_i, 0, 1)

        # Compute the Dice
        dice = dc(gt_c_i, pred_c_i)
        try:
            h_d = hd(gt_c_i, pred_c_i) if ifhd else -1
        except:
            h_d = -1
        try:
            a_sd = asd(gt_c_i, pred_c_i) if ifasd else -1
        except:
            a_sd = -1
        res += [dice, h_d, a_sd]

    return res
    def metrics(self, img_gt, img_pred, voxel_size):
        if img_gt.ndim != img_pred.ndim:
            raise ValueError(
                "The arrays 'img_gt' and 'img_pred' should have the "
                "same dimension, {} against {}".format(img_gt.ndim,
                                                       img_pred.ndim))
        res = []
        # Loop on each classes of the input images
        for c in [3, 1, 2]:
            # Copy the gt image to not alterate the input
            gt_c_i = np.copy(img_gt)
            gt_c_i[gt_c_i != c] = 0

            # Copy the pred image to not alterate the input
            pred_c_i = np.copy(img_pred)
            pred_c_i[pred_c_i != c] = 0

            # Clip the value to compute the volumes
            gt_c_i = np.clip(gt_c_i, 0, 1)
            pred_c_i = np.clip(pred_c_i, 0, 1)

            # Compute the Dice
            dice = dc(gt_c_i, pred_c_i)

            # Compute volume
            volpred = pred_c_i.sum() * np.prod(voxel_size) / 1000.
            volgt = gt_c_i.sum() * np.prod(voxel_size) / 1000.

            res += [dice, volpred, volpred - volgt]
        return res
예제 #8
0
def get_results(prediction, reference):
    results = {}
    for c, key in enumerate(["", "RV_", "MYO_", "LV_"]):
        ref = np.copy(reference)
        pred = np.copy(prediction)

        ref = ref if c == 0 else np.where(ref != c, 0, ref)
        pred = pred if c == 0 else np.where(np.rint(pred) != c, 0, pred)

        results[key + "SED"] = np.sum((ref - pred)**2)
        results[key + "SED_rint"] = np.sum((ref - np.rint(pred))**2)
        results[key + "maxSED"] = np.sum(
            ((ref - pred)**2).reshape(ref.shape[0], -1), axis=1).max()
        results[key + "maxSED_rint"] = np.sum(
            ((ref - np.rint(pred))**2).reshape(ref.shape[0],
                                               -1), axis=1).max()
        results[key +
                "Dice"] = 2 * np.sum(pred * np.where(ref != 0, 1, 0)) / np.sum(
                    pred + np.where(ref != 0, 1, 0)) if np.sum(
                        pred + np.where(ref != 0, 1, 0)) != 0 else 0
        results[key + "Dice_rint"] = binary.dc(
            np.where(ref != 0, 1, 0), np.where(np.rint(pred) != 0, 1, 0))
        try:
            results[key + "HD_rint"] = binary.hd(
                np.where(ref != 0, 1, 0), np.where(np.rint(pred) != 0, 1, 0))
        except Exception:
            results[key + "HD_rint"] = np.nan
    return results
예제 #9
0
def eval_seg_metric(pred, gt):
    dice = metric.dc(pred, gt)
    #hd     = metric.hd(pred,gt)
    #assd   = metric.assd(pred,gt)
    sens = metric.recall(pred, gt)

    return dice, sens
예제 #10
0
def CalDice(SegRes, Ref, seg_labels, ref_labels):
    Dice_array = []

    for res_c, ref_c in zip(seg_labels, ref_labels):
        dc = mmb.dc(SegRes == res_c, Ref == ref_c)
        Dice_array.append(dc)

    return Dice_array
예제 #11
0
def dice(result, reference):
    d = 0
    res = np.squeeze(result)
    ref = np.squeeze(reference)
    for layer in range(1, 3):
        d += dc(res == layer, ref == layer)

    return d / 3
예제 #12
0
def metrics_slice(img_gt, img_pred, voxel_size):
    """
    Function to compute the metrics between two segmentation maps given as input.

    Parameters
    ----------
    img_gt: np.array
    Array of the ground truth segmentation map.

    img_pred: np.array
    Array of the predicted segmentation map.

    voxel_size: list, tuple or np.array
    The size of a voxel of the images used to compute the volumes.

    Return
    ------
    A list of metrics in this order, [Dice LV, Volume LV, Err LV(ml),
    Dice RV, Volume RV, Err RV(ml), Dice MYO, Volume MYO, Err MYO(ml)]
    """

    if img_gt.ndim != img_pred.ndim:
        raise ValueError("The arrays 'img_gt' and 'img_pred' should have the "
                         "same dimension, {} against {}".format(img_gt.ndim,
                                                                img_pred.ndim))

    res_zs = []
    for zz in range(img_gt.shape[2]):
        res_z = []
        # Loop on each classes of the input images
        for c in [3, 1, 2]:
            # Copy the gt image to not alterate the input
            gt_c_i = np.copy(img_gt[..., zz])
            gt_c_i[gt_c_i != c] = 0

            # Copy the pred image to not alterate the input
            pred_c_i = np.copy(img_pred[..., zz])
            pred_c_i[pred_c_i != c] = 0

            # Clip the value to compute the volumes
            gt_c_i = np.clip(gt_c_i, 0, 1)
            pred_c_i = np.clip(pred_c_i, 0, 1)

            # Modified dice accuracy
            xent = mod_dc(gt_c_i, pred_c_i)

            # Compute the Dice
            dice = dc(gt_c_i, pred_c_i)

            # Compute volume
            volpred = pred_c_i.sum() * np.prod(voxel_size) / 1000.
            volgt = gt_c_i.sum() * np.prod(voxel_size) / 1000.

            res_z += [dice, xent, volpred, volpred - volgt]

        res_zs += [res_z]

    return metrics(img_gt, img_pred, voxel_size), res_zs
예제 #13
0
def do(argv):
  
    segResults_path = argv[0]
    references_path = argv[1]
    num_classes = argv[2]

    results = listdir(segResults_path)
    results.sort(key=lambda f: int(filter(str.isdigit, f)))
    references = listdir(references_path)
    references.sort(key=lambda f: int(filter(str.isdigit, f)))

    res = 1 # image-specific variable
    for resultname, referencename in zip(results,references):
        result = nib.load(join(segResults_path,resultname)).get_data()
        reference = nib.load(join(references_path,referencename)).get_data()

        # Please adjust this for your own data
        reference = numpy.expand_dims(reference,axis=3)
        reference = numpy.expand_dims(reference,axis=4)

        print("ASSD: ", mmb.assd(result,reference,voxelspacing=res))

        Assd_array = []
        Dice_array = []
        print(num_classes)
        for c_i in xrange(0,int(num_classes)):
            dc = mmb.dc(result == c_i, reference == c_i)
            assd = mmb.assd(result == c_i, reference == c_i,voxelspacing=res)
            Assd_array.append(assd)
            Dice_array.append(dc)

        for i in xrange(0, len(Dice_array)):
            print('Dice score of class_{}'.format(i), Dice_array[i])

        for i in xrange(0,len(Assd_array)):
            print('ASSD score  of class_{}'.format(i), Assd_array[i])



        #print("obj_assd: ",obj_assd(result,reference))
        #print("ASD: ", asd(result,reference))
        #print("ASD: ", asd(reference,result))
        #print("HD: ", hd(result,reference))
        print("Dice: ", mmb.dc(result,reference))
def metrics(img_gt, img_pred, voxel_size):
    """
    Function to compute the metrics between two segmentation maps given as input.

    Parameters
    ----------
    img_gt: np.array
    Array of the ground truth segmentation map.

    img_pred: np.array
    Array of the predicted segmentation map.

    voxel_size: list, tuple or np.array
    The size of a voxel of the images used to compute the volumes.

    Return
    ------
    A list of metrics in this order, [Dice LV, Volume LV, Err LV(ml),
    Dice RV, Volume RV, Err RV(ml), Dice MYO, Volume MYO, Err MYO(ml)]
    """

    if img_gt.ndim != img_pred.ndim:
        raise ValueError("The arrays 'img_gt' and 'img_pred' should have the "
                         "same dimension, {} against {}".format(
                             img_gt.ndim, img_pred.ndim))

    res = []
    # Loop on each classes of the input images
    for c in [3, 1, 2]:
        # Copy the gt image to not alterate the input
        gt_c_i = np.copy(img_gt)
        gt_c_i[gt_c_i != c] = 0

        # Copy the pred image to not alterate the input
        pred_c_i = np.copy(img_pred)
        pred_c_i[pred_c_i != c] = 0

        # Clip the value to compute the volumes
        gt_c_i = np.clip(gt_c_i, 0, 1)
        pred_c_i = np.clip(pred_c_i, 0, 1)

        # Compute the Dice
        dice = dc(gt_c_i, pred_c_i)
        try:
            hausdorff = hd(pred_c_i, gt_c_i)
        except Exception as e:
            hausdorff = np.NaN
            #hausdorff = img_gt.shape[0]/4 # mark this hausdorff as a really huge error
            print(str(e))
        # Compute volume
        volpred = pred_c_i.sum() * np.prod(voxel_size) / 1000.
        volgt = gt_c_i.sum() * np.prod(voxel_size) / 1000.

        res += [dice, volpred, volpred - volgt, hausdorff]

    return res
def metrics(img_gt, img_pred, voxel_size):
    global VOXEL_SPACING
    """
    Function to compute the metrics between two segmentation maps given as input.

    Parameters
    ----------
    img_gt: np.array
    Array of the ground truth segmentation map.

    img_pred: np.array
    Array of the predicted segmentation map.

    voxel_size: list, tuple or np.array
    The size of a voxel of the images used to compute the volumes.

    Return
    ------
    A list of metrics in this order, [Dice LV, Volume LV, Err LV(ml),
    Dice RV, Volume RV, Err RV(ml), Dice MYO, Volume MYO, Err MYO(ml)]
    """
    print (img_gt.shape)
    print (img_pred.shape)
    if img_gt.ndim != img_pred.ndim:
        raise ValueError("The arrays 'img_gt' and 'img_pred' should have the "
                         "same dimension, {} against {}".format(img_gt.ndim,
                                                                img_pred.ndim))

    res = []
    # Loop on each classes of the input images
    for c in [255]:
        # Copy the gt image to not alterate the input
        gt_c_i = np.copy(img_gt)
        gt_c_i[gt_c_i != c] = 0

        # Copy the pred image to not alterate the input
        pred_c_i = np.copy(img_pred)
        pred_c_i[pred_c_i != c] = 0

        # Clip the value to compute the volumes
        gt_c_i = np.clip(gt_c_i, 0, 1)
        pred_c_i = np.clip(pred_c_i, 0, 1)

        # Compute the Dice
        dice = dc(gt_c_i, pred_c_i)
        hd_value=hd(gt_c_i,pred_c_i,voxelspacing=VOXEL_SPACING,connectivity=1)
        assd_value = assd(gt_c_i, pred_c_i, voxelspacing=VOXEL_SPACING,connectivity=1)
        jd=jc(gt_c_i,pred_c_i)

        # Compute volume
        # volpred = pred_c_i.sum() * np.prod(voxel_size) / 1000.
        # volgt = gt_c_i.sum() * np.prod(voxel_size) / 1000.
       # res+=[dice,jd]
        res += [dice,jd,hd_value,assd_value]#,volpred, volpred-volgt]

    return res
예제 #16
0
def DiceCoeff(pred, gt):
    pred = pred.to('cpu').numpy()
    gt = gt.to('cpu').numpy()

    # if gt is all zero (use inverse to count)
    if np.count_nonzero(gt) == 0:
        gt = gt + 1
        pred = 1 - pred

    return dc(pred, gt)
def inferencee(network, x_train, y_train, imageNames, epoch, folder_save,
               number_modalities):
    a = 64
    b = 64
    '''root_dir = './Data/MRBrainS/DataNii/'
    model_dir = 'model'

    moda_1 = root_dir + 'Training/T1'
    moda_2 = root_dir + 'Training/T1_IR'
    moda_3 = root_dir + 'Training/T2_FLAIR'
    moda_g = root_dir + 'Training/GT'''
    network.eval()
    softMax = nn.Sigmoid()
    numClasses = 1
    if torch.cuda.is_available():
        softMax.cuda()
        network.cuda()

    patchSize = a
    patchSize_gt = b

    pred_numpy = np.zeros((0, patchSize_gt, patchSize_gt, patchSize_gt))
    pred_numpy = np.vstack(
        (pred_numpy,
         np.zeros(
             (x_train.shape[0], patchSize_gt, patchSize_gt, patchSize_gt))))
    # pred = network(numpy_to_var(x[0,:,:,:,:]).view(1,number_modalities,patchSize,patchSize,patchSize))
    for i_p in range(x_train.shape[0]):
        pred = network(
            numpy_to_var(x_train[i_p, :, :, :, :].reshape(
                1, number_modalities, patchSize, patchSize, patchSize)))
        pred_y = softMax(pred.reshape(patchSize_gt, patchSize_gt,
                                      patchSize_gt))
        pred_numpy[i_p, :, :, :] = pred_y.cpu().data.numpy()

        printProgressBar(i_p + 1,
                         x_train.shape[0],
                         prefix="[Training_eval] ",
                         length=15)

    # To reconstruct the predicted volume
    extraction_step_value = b
    pred_classes = np.round(pred_numpy)

    pred_classes = pred_classes.reshape(
        (x_train.shape[0], patchSize_gt, patchSize_gt, patchSize_gt))
    # bin_seg = reconstruct_volume(pred_classes, (img_shape[1], img_shape[2], img_shape[3]))

    # bin_seg = bin_seg[:,:,extraction_step_value:img_shape[3]-extraction_step_value]

    dsc = dc(y_train, pred_classes)
    acc = accuracy_score(y_train.flatten(), pred_classes.flatten())

    return dsc, acc
예제 #18
0
def getbest_dice(preds_train_func,pred_mask):
	dice=np.zeros(256,dtype=np.float32)
	for i in range(0,255):
		hello=preds_train_func[...,axis].squeeze()
		hello = (hello>i).astype(np.bool)
		#ihere+=i
		dcval= dc(hello,pred_mask)*100
		#print('here',dcval)
		#dice= []
		dice[i]=dcval
		#dice= int(dice)
		#data= [dice,i]
	return dice
예제 #19
0
def CalDice(SegRes, Ref, seg_labels, ref_labels):
    Dice_array = []
    ASSD_array = []
    print(len(np.unique(SegRes)))
    if len(np.unique(SegRes)) > 3:
       print('Subnuclei!')
       seg_labels = [1,2,3,4,5,6,7,8,9,10]
       ref_labels = [1,2,3,4,5,6,7,8,9,10]
       for res_c,ref_c in zip(seg_labels,ref_labels):
           if (res_c != 1) & (res_c != 6) & (ref_c != 1) & (res_c != 6):

              dc = mmb.dc(SegRes == res_c, Ref == ref_c)
              Dice_array.append(dc)
    else:
       print('Amygdala!')
       ref_labels = [1,2]
       seg_labels = [1,2]
       for res_c,ref_c in zip(seg_labels,ref_labels):
           dc = mmb.dc(SegRes == res_c, Ref == ref_c)
           Dice_array.append(dc)

    return Dice_array
예제 #20
0
def evaluateSegmentation(gt, pred):
    pred = pred.astype(dtype='int')
    numClasses = np.unique(gt)

    dsc = np.zeros((1, len(numClasses) - 1))

    for i_n in range(1, len(numClasses)):
        gt_c = np.zeros(gt.shape)
        y_c = np.zeros(gt.shape)
        gt_c[np.where(gt == i_n)] = 1
        y_c[np.where(pred == i_n)] = 1

        dsc[0, i_n - 1] = dc(gt_c, y_c)
    return dsc
예제 #21
0
def get_score(truth, prediction, masking_functions):
    score = list()
    dice_score = [dc(func(truth), func(prediction))
                  for func in masking_functions]
    # hd_score = [hd(func(truth), func(prediction))
    #             for func in masking_functions]
    sensitivity_score = [sensitivity(func(truth), func(prediction))
                         for func in masking_functions]
    specificity_score = [specificity(func(truth), func(prediction))
                         for func in masking_functions]
    score.extend(dice_score)
    # score.extend(sensitivity_score)
    # score.extend(specificity_score)
    return score
def binary_measures_numpy(result, target, binary_threshold=0.5):
    result_binary = (result > binary_threshold).astype(numpy.uint8)
    target_binary = (target > binary_threshold).astype(numpy.uint8)

    result = BinaryMeasuresDto(mpm.dc(result_binary, target_binary), numpy.Inf,
                               numpy.Inf,
                               mpm.precision(result_binary, target_binary),
                               mpm.sensitivity(result_binary, target_binary),
                               mpm.specificity(result_binary, target_binary))

    if result_binary.any() and target_binary.any():
        result.hd = mpm.hd(result_binary, target_binary)
        result.assd = mpm.assd(result_binary, target_binary)

    return result
예제 #23
0
def metrics(img_gt, img_pred, classes):
    """
    author: Clément Zotti ([email protected])
    date: April 2017
    - without the volume part

    Function to compute the metrics between two segmentation maps given as input.

    Parameters
    ----------
    img_gt: np.array
    Array of the ground truth segmentation map.

    img_pred: np.array
    Array of the predicted segmentation map.

    Return
    ------
    A list of metrics in this order, [Dice LV, Dice RV, Dice MYO]
    """

    if img_gt.ndim != img_pred.ndim:
        raise ValueError("The arrays 'img_gt' and 'img_pred' should have the "
                         "same dimension, {} against {}".format(
                             img_gt.ndim, img_pred.ndim))

    res = []
    # Loop on each classes of the input images
    for c in classes:
        # Copy the gt image to not alterate the input
        gt_c_i = np.copy(img_gt)
        gt_c_i[gt_c_i != c] = 0

        # Copy the pred image to not alterate the input
        pred_c_i = np.copy(img_pred)
        pred_c_i[pred_c_i != c] = 0

        # Clip the value to compute the volumes
        gt_c_i = np.clip(gt_c_i, 0, 1)
        pred_c_i = np.clip(pred_c_i, 0, 1)

        # Compute the Dice
        dice = dc(gt_c_i, pred_c_i)

        res += [dice]

    return np.array(res)
예제 #24
0
def process_model(c,files,mhas):
    errs = []
    dorf = []
    asd = []
    ravd_arr = []
    dc_arr = []
    vols = []
    for f in files:
        mod = f.replace('truth',c)

        img_name = f.split('.')[0]
        img_file = [i for i in mhas if img_name in i][0]

        print f, mod, img_file

        ref_img = sitk.ReadImage(img_file)

        p1 = utility.readVTKPD(vtk_dir+f)
        p2 = utility.readVTKPD(vtk_dir+mod)
        e = utility.jaccard3D_pd_to_itk(p1,p2,ref_img)
        errs.append(e)

        np1 = utility.pd_to_numpy_vol(p1, spacing=ref_img.GetSpacing(), shape=ref_img.GetSize(), origin=ref_img.GetOrigin() )
        np2 = utility.pd_to_numpy_vol(p2, spacing=ref_img.GetSpacing(), shape=ref_img.GetSize(), origin=ref_img.GetOrigin() )
        if np.sum(np1) > 0 and np.sum(np2) > 0:
            e = hd(np1,np2, ref_img.GetSpacing()[0])
            dorf.append(e)

            e_asd = assd(np1,np2, ref_img.GetSpacing()[0])
            asd.append(e_asd)

            e_ravd = abs(ravd(np1,np2))
            ravd_arr.append(e_asd)

            e_dc = dc(np1,np2)
            dc_arr.append(e_dc)
        vols.append(np.sum(np1)*ref_img.GetSpacing()[0])
    np.save(output_dir+'{}.jaccard.npy'.format(c),errs)
    np.save(output_dir+'{}.dorf.npy'.format(c),dorf)
    np.save(output_dir+'{}.assd.npy'.format(c),asd)
    np.save(output_dir+'{}.ravd.npy'.format(c),ravd_arr)
    np.save(output_dir+'{}.dc.npy'.format(c),dc_arr)
    np.save(output_dir+'{}.vols.npy'.format(c),vols)

    return '{} , {}, {}, {}, {}, {}, {}, {}, {}, {}, {}\n'.format(\
    c,np.mean(errs),np.std(errs),np.mean(dorf),np.std(dorf),np.mean(asd),\
    np.std(asd), np.mean(ravd_arr),np.std(ravd_arr),np.mean(dc_arr),np.std(dc_arr))
예제 #25
0
def evaluate_metrics(prediction, reference):
    results = {}
    for c,key in enumerate(["_RV", "_MYO", "_LV"],start=1):
        ref = np.copy(reference)
        pred = np.copy(prediction)

        ref = ref if c==0 else np.where(ref!=c, 0, ref)
        pred = pred if c==0 else np.where(np.rint(pred)!=c, 0, pred)

        try:
            results["DSC" + key] = binary.dc(np.where(ref!=0, 1, 0), np.where(np.rint(pred)!=0, 1, 0))
        except:
            results["DSC" + key] = 0
        try:
            results["HD" + key] = binary.hd(np.where(ref!=0, 1, 0), np.where(np.rint(pred)!=0, 1, 0))
        except:
            results["HD" + key] = np.nan
    return results
예제 #26
0
def evaluateSegmentation(gt, pred):
    pred = pred.astype(dtype='int')
    gt = gt.astype(dtype='int')
    # print(np.unique(pred))
    # print('pred',pred.shape)
    numClasses = np.unique(gt)
    # print('gt',numClasses)

    dsc = np.zeros((1, len(numClasses) - 1))

    for i_n in range(1, len(numClasses)):
        gt_c = np.zeros(gt.shape)
        y_c = np.zeros(gt.shape)
        gt_c[np.where(gt == i_n)] = 1
        # print(gt_c[:,0:18,0:18])
        y_c[np.where(pred == i_n)] = 1
        # print(y_c[:,0:18,0:18])
        dsc[0, i_n - 1] = dc(gt_c, y_c)
    return dsc
예제 #27
0
    def metrics(img_gt, img_pred, ifhd=True, ifasd=True):
        """
        Function to compute the metrics between two segmentation maps given as input.

        img_gt: Array of the ground truth segmentation map.

        img_pred: Array of the predicted segmentation map.
        Return: A list of metrics in this order, [Dice endo, HD endo, ASD endo, Dice RV, HD RV, ASD RV, Dice MYO, HD MYO, ASD MYO]
        """

        if img_gt.ndim != img_pred.ndim:
            raise ValueError("The arrays 'img_gt' and 'img_pred' should have the "
                             "same dimension, {} against {}".format(img_gt.ndim,
                                                                    img_pred.ndim))
        res = []
        # cat = {500: 'endo', 600: 'rv', 200: 'myo'}
        for c in [500, 600, 200]:
            # Copy the gt image to not alterate the input
            gt_c_i = np.copy(img_gt)
            gt_c_i[gt_c_i != c] = 0

            # Copy the pred image to not alterate the input
            pred_c_i = np.copy(img_pred)
            pred_c_i[pred_c_i != c] = 0

            # Clip the value to compute the volumes
            gt_c_i = np.clip(gt_c_i, 0, 1)
            pred_c_i = np.clip(pred_c_i, 0, 1)
            # Compute the Dice
            dice = dc(gt_c_i, pred_c_i)

            h_d, a_sd = -1, -1
            if ifhd or ifasd:
                if np.sum(gt_c_i) == 0 or np.sum(pred_c_i) == 0:
                    dice = -1
                    h_d = -1
                    a_sd = -1
                else:
                    h_d = hd(gt_c_i, pred_c_i) if ifhd else h_d
                    a_sd = asd(gt_c_i, pred_c_i) if ifasd else a_sd
            res += [dice, h_d, a_sd]

        return res
예제 #28
0
def evaluate(img_gt, img_pred, apply_hd=False, apply_asd=False):
    """
    Function to compute the metrics between two segmentation maps given as input.
    :param img_gt: Array of the ground truth segmentation map.
    :param img_pred: Array of the predicted segmentation map.
    :param apply_hd: whether to compute Hausdorff Distance.
    :param apply_asd: Whether to compute Average Surface Distance.
    :return: A list of metrics in this order, [dice myo, hd myo, asd myo, dice lv, hd lv asd lv, dice rv, hd rv, asd rv]
    """

    if img_gt.ndim != img_pred.ndim:
        raise ValueError("The arrays 'img_gt' and 'img_pred' should have the "
                         "same dimension, {} against {}".format(img_gt.ndim,
                                                                img_pred.ndim))

    res = {}
    class_name = ["myo", "lv", "rv"]
    # Loop on each classes of the input images
    for c, cls_name in zip([1, 2, 3], class_name) :
        # Copy the gt image to not alterate the input
        gt_c_i = np.copy(img_gt)
        gt_c_i[gt_c_i != c] = 0

        # Copy the pred image to not alterate the input
        pred_c_i = np.copy(img_pred)
        pred_c_i[pred_c_i != c] = 0

        # Clip the value to compute the volumes
        gt_c_i = np.clip(gt_c_i, 0, 1)
        pred_c_i = np.clip(pred_c_i, 0, 1)

        # Compute the Dice
        dice = dc(gt_c_i, pred_c_i)
        h_d, a_sd = 0, 0
        if apply_hd:
            h_d = hd(gt_c_i, pred_c_i)
        if apply_asd:
            a_sd = asd (gt_c_i, pred_c_i)

        # Compute volume
        res[cls_name] = [dice, h_d, a_sd]

    return res
예제 #29
0
파일: eval.py 프로젝트: liut969/CHD-Seg
def eval_net_3D(net, test_image_names, device, dir_path, save_dir):
    net.eval()
    tot = []
    for image_name in test_image_names:
        img, lab = get_3d_image_and_label(dir_path, image_name)
        for i in range(lab.shape[2]):
            lab[:, :, i] = cv2.resize(lab[:, :, i], dsize=(512, 512), interpolation=cv2.INTER_NEAREST)
            current_image = img[:, :, i]
            current_image = torch.from_numpy(current_image)
            current_image = current_image.to(device=device)
            current_image = current_image.unsqueeze(dim=0)
            current_image = current_image.unsqueeze(dim=0)
            current_image = current_image.float()

            mask_pred = net(current_image).squeeze(dim=0)
            mask_pred = mask_pred.cpu().detach().numpy()

            mask_pred = np.argmax(mask_pred, 0)
            img[:, :, i] = mask_pred
            if save_dir is not None:
                num = re.findall('\d+', image_name)
                save_name = os.path.join(save_dir, str(num[0]).zfill(4) + '.' + str(i+1).zfill(4) + '.png')
                cv2.imwrite(save_name, mask_pred * 30)

        res = []
        for c in [1, 2, 3, 4, 5, 6, 7]:
            gt_c_i = np.copy(lab)
            gt_c_i[gt_c_i != c] = 0
            pred_c_i = np.copy(img)
            pred_c_i[pred_c_i != c] = 0

            gt_c_i = np.clip(gt_c_i, 0, 1)
            pred_c_i = np.clip(pred_c_i, 0, 1)

            dice = dc(gt_c_i, pred_c_i)

            res += [dice]
        print(image_name, res, sum(res)/len(res))
        tot += [res]
    tot = np.sum(tot, axis=0)
    tot = np.divide(tot, len(test_image_names))
    return tot
예제 #30
0
def dice_calculation(gt, seg):

    gt, hd_gt = nrrd.read(gt)
    seg, hd_seg = nrrd.read(seg)
    if (hd_seg['space origin'] == hd_gt['space origin']).all():
        seg = np.squeeze(seg)
        gt = gt.astype('uint16')
        seg = seg.astype('uint16')
        dice = dc(seg, gt)
    else:
        dice = None


#     vox_gt = np.sum(gt)
#     vox_seg = np.sum(seg)
#     try:
#         common = np.sum(gt & seg)
#     except:
#         print(gt)
#     dice = (2*common)/(vox_gt+vox_seg)
    return dice
예제 #31
0
파일: eval.py 프로젝트: liut969/CHD-Seg
def eval_net(net, dataset, device, n_val):
    net.eval()
    tot = 0

    for i, b in tqdm(enumerate(dataset), total=n_val, desc='Validation round', unit='img'):
        img = b[0]
        true_mask = b[1][0]

        img = torch.from_numpy(img).unsqueeze(0)
        true_mask = torch.from_numpy(true_mask)

        img = img.to(device=device)
        true_mask = true_mask.to(device=device)

        mask_pred = net(img).squeeze(dim=0)

        mask_pred = mask_pred.cpu().detach().numpy()
        true_mask = true_mask.cpu().detach().numpy()
        mask_pred = np.argmax(mask_pred, 0)
        # print(np.unique(true_mask), np.unique(mask_pred))

        if (len(np.unique(true_mask)) == 1 and np.unique(true_mask) == [0]):
            n_val -= 1
        else:
            current_dice = 0
            classes = np.unique(true_mask)
            for c in [1, 2, 3, 4, 5, 6, 7]:
                gt_c_i = np.copy(true_mask)
                gt_c_i[gt_c_i != c] = 0
                pred_c_i = np.copy(mask_pred)
                pred_c_i[pred_c_i != c] = 0
                gt_c_i = np.clip(gt_c_i, 0, 1)
                pred_c_i = np.clip(pred_c_i, 0, 1)
                dice = dc(gt_c_i, pred_c_i)
                current_dice += dice
            # print(current_dice / (len(classes)-1))
            tot += (current_dice / (len(classes)-1))
            # plot_img_and_mask(true_mask, mask_pred)

    return tot / n_val
예제 #32
0
def main():
    parser = argparse.ArgumentParser(
        description='Iterative Fully Convolutional Network')
    parser.add_argument('--label_dir',
                        type=str,
                        default='./crop_isotropic_dataset/test/seg',
                        help='folder of test label')
    parser.add_argument('--pred_dir',
                        type=str,
                        default='./pred',
                        help='folder of pred masks')
    args = parser.parse_args()

    labels = [
        os.path.join(args.label_dir, x)
        for x in os.listdir(os.path.join(args.label_dir)) if 'raw' not in x
    ]
    preds = [
        os.path.join(args.pred_dir, x)
        for x in os.listdir(os.path.join(args.pred_dir)) if 'raw' not in x
    ]

    n = 0
    avg_dc = 0.
    for l, p in zip(labels, preds):
        logging.info("Process %s and %s" % (p, l))
        label = sitk.GetArrayFromImage(sitk.ReadImage(l))
        pred = sitk.GetArrayFromImage(sitk.ReadImage(p))
        for i in np.unique(label):
            l = label[label == i]
            p = pred[label == i]
            l[l > 0] = 1
            p[p > 0] = 1
            avg_dc += dc(p, l)
            n += 1

    logging.info(
        "Average Dice Coefficient for %s individual vertebrae test : %s" %
        (n, avg_dc / n))