def test_explicit_runner_scaler(self): # alanine dipeptide in TIP3P box sys = system.builder.load_amber_system(self.top_path, self.mdcrd_path) sys.temperature_scaler = system.ConstantTemperatureScaler(300.) rest2_scaler = system.GeometricTemperatureScaler(0, 1, 300., 350.) options = system.RunOptions(solvation="explicit") options.rest2_scaler = system.REST2Scaler(300., rest2_scaler) options.timesteps = 20 options.use_rest2 = True runner = OpenMMRunner(sys, options, platform="Reference") runner.prepare_for_timestep(0., 1) pos = sys._coordinates.copy() vel = np.zeros_like(pos) alpha = 0. energy = 0. box_vectors = sys._box_vectors state = system.SystemState(pos, vel, alpha, energy, box_vectors) state = runner.minimize_then_run(state) state = runner.run(state) assert state
def setup_system(): # create the system sequence = parse.get_sequence_from_AA1(filename='sequence.dat') p = system.ProteinMoleculeFromSequence(sequence) #p = system.ProteinMoleculeFromPdbFile('start.pdb') b = system.SystemBuilder() s = b.build_system_from_molecules([p]) s.temperature_scaler = system.GeometricTemperatureScaler( 0, 1.0, 300., 425.) # create the options options = system.RunOptions() options.implicit_solvent_model = 'gbNeck2' options.use_big_timestep = True options.cutoff = 1.8 options.use_amap = True options.amap_beta_bias = 3.4 options.timesteps = 50000 options.minimize_steps = 20000 options.sc_alpha_min = 0.15 options.sc_alpha_max_coulomb = 0.45 options.sc_alpha_max_lennard_jones = 0.9 options.sc_alpha_max_lj = 0. options.softcore = False # create a store store = vault.DataStore(s.n_atoms, N_REPLICAS, s.get_pdb_writer(), block_size=BLOCK_SIZE) store.initialize(mode='w') store.save_system(s) store.save_run_options(options) # create and store the remd_runner l = ladder.NearestNeighborLadder(n_trials=128) policy = adaptor.AdaptationPolicy(2.0, 20, 20) a = adaptor.EqualAcceptanceAdaptor(n_replicas=N_REPLICAS, adaptation_policy=policy) remd_runner = master_runner.MasterReplicaExchangeRunner(N_REPLICAS, max_steps=N_STEPS, ladder=l, adaptor=a) store.save_remd_runner(remd_runner) # create and store the communicator c = comm.MPICommunicator(s.n_atoms, N_REPLICAS) store.save_communicator(c) # create and save the initial states states = [gen_state(s, i) for i in range(N_REPLICAS)] store.save_states(states, 0) # save data_store store.save_data_store() return s.n_atoms
def setup_system(): # load the sequence # sequence = parse.get_sequence_from_AA1(filename='sequence.dat') # n_res = len(sequence.split()) # setup the patchers patcher = patchers.VirtualSpinLabel({ 122: 'OND', 37: 'OND', 48: 'OND', 138: 'OND', 81: 'OND', 12: 'OND', 105: 'OND', 112: 'OND', 29: 'OND' }) # build the system p = system.ProteinMoleculeFromPdbFile('cam2smmlck.pdb') b = system.SystemBuilder() s = b.build_system_from_molecules([p], [patcher]) s.temperature_scaler = system.GeometricTemperatureScaler( 0, 0.5, 300., 550.) # add restraint # scaler = s.restraints.create_scaler('constant') # r = s.restraints.create_restraint('distance', # scaler, # r1=0.0, # r2=0.0, # r3=.45, # r4=.65, # k=250., # atom_1_res_index=1, # atom_1_name='OND', # atom_2_res_index=16, # atom_2_name='OND') # s.restraints.add_as_always_active(r) # create the options options = system.RunOptions(solvation='implicit') options.implicit_solvent_model = 'gbNeck' options.use_big_timestep = False options.cutoff = 1.8 options.use_amap = True options.amap_beta_bias = 1.0 options.timesteps = 1428 options.minimize_steps = 100 # create a store store = vault.DataStore(s.n_atoms, N_REPLICAS, s.get_pdb_writer(), block_size=BLOCK_SIZE) store.initialize(mode='w') store.save_system(s) store.save_run_options(options) # create and store the remd_runner l = ladder.NearestNeighborLadder(n_trials=48 * 48) policy_1 = adaptor.AdaptationPolicy(2.0, 50, 50) a = adaptor.EqualAcceptanceAdaptor(n_replicas=N_REPLICAS, adaptation_policy=policy_1) remd_runner = master_runner.MasterReplicaExchangeRunner(N_REPLICAS, max_steps=N_STEPS, ladder=l, adaptor=a) store.save_remd_runner(remd_runner) # create and store the communicator c = comm.MPICommunicator(s.n_atoms, N_REPLICAS) store.save_communicator(c) # create and save the initial states states = [gen_state(s, i) for i in range(N_REPLICAS)] store.save_states(states, 0) # save data_store store.save_data_store() return s.n_atoms
def setup_system(): # load the sequence sequence = parse.get_sequence_from_AA1(filename='sequence.dat') n_res = len(sequence.split()) # build the system p = system.ProteinMoleculeFromSequence(sequence) b = system.SystemBuilder() s = b.build_system_from_molecules([p]) s.temperature_scaler = system.GeometricTemperatureScaler( 0, 0.4, 300., 550.) # # Secondary Structure # ss_scaler = s.restraints.create_scaler('constant') ss_rests = parse.get_secondary_structure_restraints( filename='ss.dat', system=s, scaler=ss_scaler, torsion_force_constant=2.5, distance_force_constant=2.5) n_ss_keep = int(len(ss_rests) * 0.70) #We enforce 70% of restrains s.restraints.add_selectively_active_collection(ss_rests, n_ss_keep) # # Confinement Restraints # conf_scaler = s.restraints.create_scaler('constant') confinement_rests = [] confinement_dist = (16.9 * np.log(s.residue_numbers[-1]) - 15.8) / 28. for index in range(n_res): rest = s.restraints.create_restraint('confine', conf_scaler, LinearRamp(0, 100, 0, 1), res_index=index + 1, atom_name='CA', radius=confinement_dist, force_const=250.0) confinement_rests.append(rest) s.restraints.add_as_always_active_list(confinement_rests) # # Distance Restraints # # High reliability # dist_scaler = s.restraints.create_scaler('nonlinear', alpha_min=0.4, alpha_max=1.0, factor=4.0) #contact80_dist = get_dist_restraints('target_contacts_over_80.dat', s, dist_scaler) #n_high_keep = int(0.80 * len(contact80_dist)) #s.restraints.add_selectively_active_collection(contact80_dist, n_high_keep) # # Long # #contact60_dist = get_dist_restraints('target_contacts_over_60.dat', s, dist_scaler) #n_high_keep = int(0.60 * len(contact60_dist)) #s.restraints.add_selectively_active_collection(contact60_dist, n_high_keep) # # Heuristic Restraints # subset = np.array(range(n_res)) + 1 # # Hydrophobic # create_hydrophobes(s, scaler=dist_scaler, group_1=subset) # # Strand Pairing # sse, active = make_ss_groups(subset=subset) generate_strand_pairs(s, sse, active, subset=subset) # create the options options = system.RunOptions() options.implicit_solvent_model = 'gbNeck2' options.use_big_timestep = True options.cutoff = 1.8 options.use_amap = True options.amap_beta_bias = 1.0 options.timesteps = 14286 options.minimize_steps = 20000 # create a store store = vault.DataStore(s.n_atoms, N_REPLICAS, s.get_pdb_writer(), block_size=BLOCK_SIZE) store.initialize(mode='w') store.save_system(s) store.save_run_options(options) # create and store the remd_runner l = ladder.NearestNeighborLadder(n_trials=48 * 48) policy = adaptor.AdaptationPolicy(2.0, 50, 50) a = adaptor.EqualAcceptanceAdaptor(n_replicas=N_REPLICAS, adaptation_policy=policy) remd_runner = master_runner.MasterReplicaExchangeRunner(N_REPLICAS, max_steps=N_STEPS, ladder=l, adaptor=a) store.save_remd_runner(remd_runner) # create and store the communicator c = comm.MPICommunicator(s.n_atoms, N_REPLICAS) store.save_communicator(c) # create and save the initial states states = [gen_state(s, i) for i in range(N_REPLICAS)] store.save_states(states, 0) # save data_store store.save_data_store() return s.n_atoms
def setup_system(): # load the sequence protein_sequence = parse.get_sequence_from_AA1(filename='protein.dat') peptide_sequence = parse.get_sequence_from_AA1(filename='peptide.dat') n_res_protein = len(protein_sequence.split()) n_res_peptide = len(peptide_sequence.split()) # build the system protein = system.ProteinMoleculeFromSequence(protein_sequence) peptide = system.ProteinMoleculeFromSequence(peptide_sequence) protein.set_translation([100, 100, 150]) peptide.set_translation([100, 150, 100]) calcium1 = system.ProteinMoleculeFromSequence('CA') calcium2 = system.ProteinMoleculeFromSequence('CA') calcium3 = system.ProteinMoleculeFromSequence('CA') calcium4 = system.ProteinMoleculeFromSequence('CA') calcium1.set_translation([100, 105, 50]) calcium2.set_translation([100, 110, 50]) calcium3.set_translation([100, 115, 50]) calcium4.set_translation([100, 120, 50]) rdc_patcher = patchers.RdcAlignmentPatcher(n_tensors=1) ond_patcher = patchers.VirtualSpinLabelPatcher({ 17: 'OND', 34: 'OND', 42: 'OND', 53: 'OND', 86: 'OND', 110: 'OND', 117: 'OND', 127: 'OND', 143: 'OND', 149: 'OND' }) b = system.SystemBuilder() s = b.build_system_from_molecules( [protein, calcium1, calcium2, calcium3, calcium4, peptide], leap_header_cmds="source leaprc.water.tip3p", patchers=[rdc_patcher, ond_patcher]) s.temperature_scaler = system.GeometricTemperatureScaler( 0, 0.3, 300., 550.) ramp = s.restraints.create_scaler('linear_ramp', start_time=1, end_time=200, start_weight=0, end_weight=1) # # Secondary Structure # ss_scaler = s.restraints.create_scaler('constant') protein_ss_rests = parse.get_secondary_structure_restraints( filename='protein_ss.dat', system=s, scaler=ss_scaler, ramp=ramp, torsion_force_constant=2.5, distance_force_constant=2.5, min_secondary_match=5) peptide_ss_rests = parse.get_secondary_structure_restraints( filename='peptide_ss.dat', system=s, scaler=ss_scaler, ramp=ramp, torsion_force_constant=2.5, distance_force_constant=2.5, first_residue=int(n_res_protein) + 5) # + 4 due to calciums # + 1 for 1-based indexing protein_ss_keep = int(len(protein_ss_rests) * 0.95) peptide_ss_keep = int(len(peptide_ss_rests) * 0.95) s.restraints.add_selectively_active_collection(protein_ss_rests, protein_ss_keep) s.restraints.add_selectively_active_collection(peptide_ss_rests, peptide_ss_keep) # # Confinement Restraints # conf_scaler = s.restraints.create_scaler('constant') confinement_rests = [] n_res = n_res_protein + n_res_peptide + 4 for index in range(1, n_res + 1): protein_rest = s.restraints.create_restraint('confine', conf_scaler, ramp=ramp, res_index=index, atom_name='CA', radius=5, force_const=250.0) confinement_rests.append(protein_rest) s.restraints.add_as_always_active_list(confinement_rests) # # Calcium restraints # scaler = s.restraints.create_scaler('nonlinear', alpha_min=0.5, alpha_max=1.0, factor=4.0) calcium_rests = get_dist_restraints('calcium_restraints.dat', s, scaler, ramp) n_keep_calcium = len(calcium_rests) s.restraints.add_selectively_active_collection(calcium_rests, n_keep_calcium) # # PRE restraints # scaler_short = s.restraints.create_scaler('nonlinear', alpha_min=0.6, alpha_max=1.0, factor=4.0) scaler_medium = s.restraints.create_scaler('nonlinear', alpha_min=0.5, alpha_max=0.6, factor=4.0) scaler_long = s.restraints.create_scaler('nonlinear', alpha_min=0.4, alpha_max=0.5, factor=4.0) scalers = [scaler_short, scaler_medium, scaler_long] OND_list = [17, 34, 42, 53, 86, 110, 117, 127, 143, 149] for ond in OND_list: for length, i in zip(['short', 'medium', 'long'], range(3)): scaler = scalers[int(i)] pre_restraints = get_dist_restraints_pre( 'rest_files/' + str(ond) + '-pre-' + length + '.dat', s, scaler, ramp) n_keep_pre = int(len(pre_restraints) * 0.90) s.restraints.add_selectively_active_collection( pre_restraints, n_keep_pre) # # RDC Restraints # rdc_scaler = s.restraints.create_scaler('nonlinear', alpha_min=0.3, alpha_max=0.4, factor=4.0, strength_at_alpha_max=1.0e-2) rdc_rests = parse.get_rdc_restraints(system=s, patcher=rdc_patcher, scaler=rdc_scaler, ramp=ramp, quadratic_cut=1.0, scale_factor=1.0e4, filename='rdc.dat') s.restraints.add_as_always_active_list(rdc_rests) # create the options options = system.RunOptions() options.implicit_solvent_model = 'obc' options.use_big_timestep = False options.cutoff = 1.8 options.remove_com = True options.use_amap = True options.amap_beta_bias = 1.0 options.timesteps = 25000 options.minimize_steps = 5000 # create a store store = vault.DataStore(s.n_atoms, N_REPLICAS, s.get_pdb_writer(), block_size=BLOCK_SIZE) store.initialize(mode='w') store.save_system(s) store.save_run_options(options) # create and store the remd_runner l = ladder.NearestNeighborLadder(n_trials=48 * 48) policy_1 = adaptor.AdaptationPolicy(2.0, 50, 50) a = adaptor.EqualAcceptanceAdaptor(n_replicas=N_REPLICAS, adaptation_policy=policy_1) remd_runner = master_runner.MasterReplicaExchangeRunner(N_REPLICAS, max_steps=N_STEPS, ladder=l, adaptor=a) store.save_remd_runner(remd_runner) # create and store the communicator c = comm.MPICommunicator(s.n_atoms, N_REPLICAS) store.save_communicator(c) # create and save the initial states states = [gen_state(s, i) for i in range(N_REPLICAS)] store.save_states(states, 0) # save data_store store.save_data_store() return s.n_atoms
def setup_system(): # create the system starting from coordinates in template.pdb templates = glob.glob('%s-sep.pdb' % (sys.argv[1])) p = system.ProteinMoleculeFromPdbFile(templates[0]) b = system.SystemBuilder(forcefield="ff14sbside") # load non-standard AA force field params, bonds s = b.build_system_from_molecules([p]) # Create temperature ladder s.temperature_scaler = system.GeometricTemperatureScaler( 0.0, 0.5, 300., 500.) # Keep protein dimer conformation fairly constant dist_scaler = s.restraints.create_scaler('nonlinear', alpha_min=0.4, alpha_max=1.0, factor=4.0) const_scaler = s.restraints.create_scaler('constant') dist = keep_fixed_distance('%s-contacts.dat' % (sys.argv[1]), s, scaler=const_scaler) s.restraints.add_selectively_active_collection(dist, int(len(dist))) # Keep DNA hbonds #Read sequence file sequenceDNA = readSeq('%s-seq.dat' % (sys.argv[1])) #Generate hbondsDNA.dat make_hbond_restraint_file(sequenceDNA, 0) dist_scaler3 = s.restraints.create_scaler('nonlinear', alpha_min=0.9, alpha_max=1.0, factor=4.0) dist = keep_fixed_distance('hbondsDNA.dat', s, scaler=const_scaler) s.restraints.add_selectively_active_collection(dist, int(len(dist))) # Keep DNA close to starting conformation rest = make_cartesian_collections(s, const_scaler, range(1, 43), atoms=[ "C1'", "C2", "C2'", "C3'", "C4", "C4'", "C5", "C5'", "C6", "C7", "C8", "DA3", "N1", "N2", "N3", "N4", "N6", "N7", "N9", "O2", "O3'", "O4", "O4'", "O5'", "O6", "OP1", "OP2", "P" ]) # rest = make_cartesian_collections(s, const_scaler, range(1,16),atoms=["C1'", "C2", "C2'", "C3'", "C4", "C4'", "C5", "C5'", "C6", "N1", "N3", "O3'", "O4'"]) #These are the common atoms to all DNA bases including ends: #C1' C2 C2' C3' C4 C4' C5 C5' C6 N1 N3 O3' O4' O5' s.restraints.add_as_always_active_list(rest) # Create Contacts between protein and DNA dom1 = get_dist_restraints('%s-DNA-contacts.dat' % (sys.argv[1]), s, scaler=dist_scaler) s.restraints.add_selectively_active_collection(dom1, int(len(dom1))) # Find Glycines and Restrain peptide within reasonable distance from DNA names = np.array(s.atom_names) resid = np.array(s.residue_numbers) # resnames = np.array(s.residue_names) select = names == 'CB' non_gly = resid[select] # scaler3 = s.restraints.create_scaler('nonlinear',alpha_min=0.7,alpha_max=1.0, factor=4.0, strength_at_alpha_min=1.0, strength_at_alpha_max=0.5) # conf_rest = [] # group1 = [] # group2 = [] # for i in range(2,21): # group1.append( (i,"O5'") ) # for i in range(22,41): # group1.append( (i,"O5'") ) # for j in non_gly: # group2.append( (j,"CB") ) # positioner = s.restraints.create_scaler('linear_positioner',alpha_min=0.7, alpha_max=1.0, pos_min=10., pos_max=15.) # conf_rest.append(s.restraints.create_restraint('com', scaler3,ramp=LinearRamp(0,100,0,1), # force_const=75.0,group1=group1,group2=group2, # distance =positioner,weights1=None, weights2=None, dims='xyz')) # s.restraints.add_as_always_active_list(conf_rest) dist_scaler2 = s.restraints.create_scaler('nonlinear', alpha_min=0.7, alpha_max=1.0, factor=4.0) res_groups = get_distance_rests('%s-res_groups.dat' % (sys.argv[1]), s, scaler=dist_scaler2) s.restraints.add_selectively_active_collection(res_groups, int(len(res_groups) - 10)) # # Secondary Structure # ss_scaler = s.restraints.create_scaler('constant') ss_rests = parse.get_secondary_structure_restraints( filename='%s-ss.dat' % (sys.argv[1]), system=s, ramp=LinearRamp(0, 100, 0, 1), scaler=ss_scaler, torsion_force_constant=2.5, distance_force_constant=2.5) n_ss_keep = int(len(ss_rests) * 0.96) s.restraints.add_selectively_active_collection(ss_rests, n_ss_keep) # create the options options = system.RunOptions() options.implicit_solvent_model = 'gbNeck2' options.remove_com = False options.use_big_timestep = False # MD timestep (3.3 fs) options.use_bigger_timestep = True # MD timestep (4.0 fs) options.cutoff = 1.8 # cutoff in nm options.soluteDielectric = 1. #options.implicitSolventSaltConc = None options.use_amap = False # correction to FF12SB options.amap_beta_bias = 1.0 options.timesteps = 11111 # number of MD steps per exchange options.minimize_steps = 20000 # init minimization steps # create a store store = vault.DataStore(s.n_atoms, N_REPLICAS, s.get_pdb_writer(), block_size=BLOCK_SIZE) store.initialize(mode='w') store.save_system(s) store.save_run_options(options) # create and store the remd_runner, sets up replica exchange details l = ladder.NearestNeighborLadder(n_trials=48) policy = adaptor.AdaptationPolicy(2.0, 50, 50) a = adaptor.EqualAcceptanceAdaptor(n_replicas=N_REPLICAS, adaptation_policy=policy) remd_runner = master_runner.MasterReplicaExchangeRunner(N_REPLICAS, max_steps=N_STEPS, ladder=l, adaptor=a) store.save_remd_runner(remd_runner) # create and store the communicator c = comm.MPICommunicator(s.n_atoms, N_REPLICAS) store.save_communicator(c) # create and save the initial states # create and save the initial states, initialize each replica with a different template states = [gen_state_templates(i, templates) for i in range(N_REPLICAS)] store.save_states(states, 0) # save data_store store.save_data_store() return s.n_atoms
def setup_system(): # ECO settings #eco_cutoff = 0.8 # the distance (in nm) that qualifies as a connection in the graph eco_cutoff = 1.0 # the distance (in nm) that qualifies as a connection in the graph doing_eco_hydrophobe = True doing_eco_hbond = True doing_eco_2ndary = False doing_eco_strand_pairing = True doing_eco_knob = False doing_eco_evolutionary = False #eco_factor = 4.0 # the factor by which we multiply the eco energy adjustment eco_factor = 1 # the factor by which we multiply the eco energy adjustment eco_constant = 0.0 # In theory, these could be changed for any restraint eco_linear = 0.0 # load the sequence sequence = parse.get_sequence_from_AA1(filename='sequence.dat') n_res = len(sequence.split()) # build the system p = system.ProteinMoleculeFromSequence(sequence) b = system.SystemBuilder(forcefield="ff14sbside") s = b.build_system_from_molecules([p]) s.temperature_scaler = system.GeometricTemperatureScaler( 0, 0.6, 300., 450.) # # Secondary Structure # ss_scaler = s.restraints.create_scaler('constant') ss_rests = parse.get_secondary_structure_restraints( filename='ss.dat', system=s, ramp=LinearRamp(0, 100, 0, 1), scaler=ss_scaler, torsion_force_constant=2.5, distance_force_constant=2.5, doing_eco=doing_eco_2ndary, eco_factor=eco_factor, eco_constant=eco_constant, eco_linear=eco_linear) n_ss_keep = int(len(ss_rests) * 0.70) #We enforce 70% of restrains s.restraints.add_selectively_active_collection(ss_rests, n_ss_keep) # # Confinement Restraints # #conf_scaler = s.restraints.create_scaler('nonlinear', alpha_min=0.4, alpha_max=1.0, factor=4.0,strength_at_alpha_min=0.0, strength_at_alpha_max=1.0) #confinement_rests = [] #confinement_dist = (16.9*np.log(s.residue_numbers[-1])-15.8)/28.*1.2 #for index in range(n_res): # rest = s.restraints.create_restraint('confine', conf_scaler, LinearRamp(0,100,0,1),res_index=index+1, atom_name='CA', radius=confinement_dist, force_const=250.0) # confinement_rests.append(rest) #s.restraints.add_as_always_active_list(confinement_rests) # # Distance Restraints # dist_scaler = s.restraints.create_scaler('nonlinear', alpha_min=0.4, alpha_max=1.0, factor=4.0) # High reliability # # # Create Plateau kind of scalers # low_2 = make_CO_scaler(system=s, scaler_type='plateaunonlinear', alpha_min=0.70, alpha_one=0.85, alpha_two=0.85, alpha_max=1.0, strength_at_alpha_min=1.0, strength_at_alpha_max=0.0) low_4 = make_CO_scaler(system=s, scaler_type='plateaunonlinear', alpha_min=0.55, alpha_one=0.70, alpha_two=0.70, alpha_max=0.85, strength_at_alpha_min=1.0, strength_at_alpha_max=0.0) low_6 = s.restraints.create_scaler('plateaunonlinear', alpha_min=0.40, alpha_one=0.55, alpha_two=0.55, alpha_max=0.7, factor=4.0, strength_at_alpha_min=1.0, strength_at_alpha_max=0.0) low_8 = s.restraints.create_scaler('nonlinear', alpha_min=0.40, alpha_max=0.55, factor=4.0) # # Heuristic Restraints # subset = np.array(range(n_res)) + 1 # # Hydrophobic # create_hydrophobes(s, ContactsPerHydroph=1.2, scaler=dist_scaler, group_1=subset, CO=False, doing_eco=doing_eco_hydrophobe, eco_factor=eco_factor, eco_constant=eco_constant, eco_linear=eco_linear) #create_hydrophobes(s,ContactsPerHydroph=1.2/4.,scaler=low_2,group_1=subset,CO=True) #create_hydrophobes(s,ContactsPerHydroph=1.2/2.,scaler=low_4,group_1=subset,CO=True) #create_hydrophobes(s,ContactsPerHydroph=1.2*3/4.,scaler=low_6,group_1=subset,CO=False) #create_hydrophobes(s,ContactsPerHydroph=1.2,scaler=low_8,group_1=subset,CO=False) # # HBonds # create_HydrogenBond(s, HBPerResidue=0.10, scaler=dist_scaler, group_1=subset, CO=False, doing_eco=doing_eco_hbond, eco_factor=eco_factor, eco_constant=eco_constant, eco_linear=eco_linear) #create_HydrogenBond(s,HBPerResidue=0.10/4.,scaler=low_2,group_1=subset,CO=True) #create_HydrogenBond(s,HBPerResidue=0.10/2.,scaler=low_4,group_1=subset,CO=True) #create_HydrogenBond(s,HBPerResidue=0.10*3/4.,scaler=low_6,group_1=subset,CO=False) #create_HydrogenBond(s,HBPerResidue=0.10,scaler=low_8,group_1=subset,CO=False) # # Strand Pairing # sse, active = make_ss_groups(subset=subset) try: generate_strand_pairs(s, sse, float(active), subset=subset, scaler=dist_scaler, CO=False, doing_eco=doing_eco_strand_pairing, eco_factor=eco_factor, eco_constant=eco_constant, eco_linear=eco_linear) #generate_strand_pairs(s,sse,float(active)/4.,subset=subset,scaler=low_2,CO=True) #generate_strand_pairs(s,sse,float(active)/2.,subset=subset,scaler=low_4,CO=True) #generate_strand_pairs(s,sse,float(active)*3/4.,subset=subset,scaler=low_6,CO=False) #generate_strand_pairs(s,sse,float(active),subset=subset,scaler=low_8,CO=False) except: print "Not using Strand Pairing Heuristic" pass # # Evolutionary restraints # try: create_Evolution(s, scaler=dist_scaler, fname='evolution_contacts.dat', doing_eco=doing_eco_evolutionary, eco_factor=eco_factor, eco_constant=eco_constant, eco_linear=eco_linear) except: print "Not using Evolutionary restraints" pass # # Distance Restraints # # # Knob restraints # try: knobs, knob_accuracy = get_knob_restraints('Knob.data', s, scaler=dist_scaler, doing_eco=doing_eco_knob, eco_factor=eco_factor, eco_constant=eco_constant, eco_linear=eco_linear) n_knobs = int(len(knobs) * knob_accuracy) s.restraints.add_selectively_active_collection(knobs, n_knobs) except: print "Not using Knob-Socket predictions" pass # setup mcmc at startup movers = [] n_atoms = s.n_atoms for i in range(1, n_res + 1): n = s.index_of_atom(i, 'N') - 1 ca = s.index_of_atom(i, 'CA') - 1 c = s.index_of_atom(i, 'C') - 1 mover = mc.DoubleTorsionMover(n, ca, list(range(ca, n_atoms)), ca, c, list(range(c, n_atoms))) movers.append((mover, 1)) sched = mc.MonteCarloScheduler(movers, n_res * 60) # create the options options = system.RunOptions() options.implicit_solvent_model = 'gbNeck2' options.use_big_timestep = False options.use_bigger_timestep = True options.cutoff = 1.8 #options.eco_cutoff = eco_cutoff # set eco_output very high so that log file does not print options.eco_params = { 'eco_cutoff': 1.0, 'eco_output_freq': 10000000, 'print_avg_eco': False, 'print_eco_value_array': False, } options.use_amap = False options.amap_beta_bias = 1.0 options.timesteps = 11111 options.minimize_steps = 20000 options.min_mc = sched options.make_alpha_carbon_list(s.atom_names) print "alpha_carbon_indeces:", options.alpha_carbon_indeces # create a store store = vault.DataStore(s.n_atoms, N_REPLICAS, s.get_pdb_writer(), block_size=BLOCK_SIZE) store.initialize(mode='w') store.save_system(s) store.save_run_options(options) # create and store the remd_runner l = ladder.NearestNeighborLadder(n_trials=48 * 48) policy = adaptor.AdaptationPolicy(2.0, 50, 50) a = adaptor.EqualAcceptanceAdaptor(n_replicas=N_REPLICAS, adaptation_policy=policy) remd_runner = master_runner.MasterReplicaExchangeRunner(N_REPLICAS, max_steps=N_STEPS, ladder=l, adaptor=a) store.save_remd_runner(remd_runner) # create and store the communicator c = comm.MPICommunicator(s.n_atoms, N_REPLICAS) store.save_communicator(c) # create and save the initial states states = [gen_state(s, i) for i in range(N_REPLICAS)] store.save_states(states, 0) # save data_store store.save_data_store() return s.n_atoms
def setup_system(): # load the sequence sequence = parse.get_sequence_from_AA1(filename='sequence.dat') n_res = len(sequence.split()) # build the system p = system.ProteinMoleculeFromSequence(sequence) b = system.SystemBuilder(forcefield="ff14sbside") s = b.build_system_from_molecules([p]) s.temperature_scaler = system.GeometricTemperatureScaler(0, 0.6, 300., 450.) # # Secondary Structure # ss_scaler = s.restraints.create_scaler('constant') ss_rests = parse.get_secondary_structure_restraints(filename='ss.dat', system=s,ramp=LinearRamp(0,100,0,1), scaler=ss_scaler, torsion_force_constant=2.5, distance_force_constant=2.5) n_ss_keep = int(len(ss_rests) * 1.0) #We enforce 100% of restrains s.restraints.add_selectively_active_collection(ss_rests, n_ss_keep) # # Distance Restraints # dist_scaler = s.restraints.create_scaler('nonlinear', alpha_min=0.4, alpha_max=1.0, factor=4.0) # High reliability # # old_protocol = s.restraints.create_scaler('nonlinear', alpha_min=0.40, alpha_max=1.00, factor=4.0) # # Heuristic Restraints # subset= np.array(list(range(n_res))) + 1 # # Hydrophobic # create_hydrophobes(s,ContactsPerHydroph=1.2,scaler=old_protocol,group_1=subset,CO=False) # # Strand Pairing # sse,active = make_ss_groups(subset=subset) try: generate_strand_pairs(s,sse,float(active),subset=subset,scaler=old_protocol,CO=False) except: print("Not using Strand Pairing Heuristic") pass # # Evolutionary restraints # try: create_Evolution(s,accuracy=0.7,scaler=dist_scaler,fname='evolution_contacts.dat') except: print("Not using Evolutionary restraints") pass # # Distance Restraints # # # Knob restraints # try: knobs,knob_accuracy = get_knob_restraints('Knob.data',s,scaler=dist_scaler) n_knobs = int(len(knobs) * knob_accuracy) s.restraints.add_selectively_active_collection(knobs,n_knobs) except: print("Not using Knob-Socket predictions") pass # setup mcmc at startup movers = [] n_atoms = s.n_atoms for i in range(1, n_res + 1): n = s.index_of_atom(i, 'N') - 1 ca = s.index_of_atom(i, 'CA') - 1 c = s.index_of_atom(i, 'C') - 1 mover = mc.DoubleTorsionMover(n, ca, list(range(ca, n_atoms)), ca, c, list(range(c, n_atoms))) movers.append((mover, 1)) sched = mc.MonteCarloScheduler(movers, n_res * 60) # create the options options = system.RunOptions() options.implicit_solvent_model = 'gbNeck2' options.use_big_timestep = False options.use_bigger_timestep = True options.cutoff = 1.8 options.use_amap = False options.amap_alpha_bias = 1.0 options.amap_beta_bias = 1.0 options.timesteps = 11111 options.minimize_steps = 20000 # for i in range(30): # print("Heads up! using MC minimizer!") # options.min_mc = sched # create a store store = vault.DataStore(s.n_atoms, N_REPLICAS, s.get_pdb_writer(), block_size=BLOCK_SIZE) store.initialize(mode='w') store.save_system(s) store.save_run_options(options) # create and store the remd_runner l = ladder.NearestNeighborLadder(n_trials=100) policy = adaptor.AdaptationPolicy(2.0, 50, 50) a = adaptor.EqualAcceptanceAdaptor(n_replicas=N_REPLICAS, adaptation_policy=policy) remd_runner = master_runner.MasterReplicaExchangeRunner(N_REPLICAS, max_steps=N_STEPS, ladder=l, adaptor=a) store.save_remd_runner(remd_runner) # create and store the communicator c = comm.MPICommunicator(s.n_atoms, N_REPLICAS) store.save_communicator(c) # create and save the initial states states = [gen_state(s, i) for i in range(N_REPLICAS)] store.save_states(states, 0) # save data_store store.save_data_store() return s.n_atoms