def train(rank, a, h): if h.num_gpus > 1: init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'], world_size=h.dist_config['world_size'] * h.num_gpus, rank=rank) torch.cuda.manual_seed(h.seed) torch.cuda.set_device(rank) device = torch.device('cuda:{:d}'.format(rank)) generator = Generator(h).to(device) mpd = MultiPeriodDiscriminator().to(device) msd = MultiScaleDiscriminator().to(device) if rank == 0: print(generator) os.makedirs(a.checkpoint_path, exist_ok=True) print("checkpoints directory : ", a.checkpoint_path) if os.path.isdir(a.checkpoint_path): cp_g = scan_checkpoint(a.checkpoint_path, 'g_') cp_do = scan_checkpoint(a.checkpoint_path, 'do_') steps = 0 if cp_g is None or cp_do is None: state_dict_do = None last_epoch = -1 else: state_dict_g = load_checkpoint(cp_g, device) state_dict_do = load_checkpoint(cp_do, device) generator.load_state_dict(state_dict_g['generator']) mpd.load_state_dict(state_dict_do['mpd']) msd.load_state_dict(state_dict_do['msd']) steps = state_dict_do['steps'] + 1 last_epoch = state_dict_do['epoch'] if h.num_gpus > 1: generator = DistributedDataParallel(generator, device_ids=[rank]).to(device) mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device) msd = DistributedDataParallel(msd, device_ids=[rank]).to(device) optim_g = torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2]) optim_d = torch.optim.AdamW(itertools.chain(msd.parameters(), mpd.parameters()), h.learning_rate, betas=[h.adam_b1, h.adam_b2]) if state_dict_do is not None: optim_g.load_state_dict(state_dict_do['optim_g']) optim_d.load_state_dict(state_dict_do['optim_d']) scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch) scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch) training_filelist, validation_filelist = get_dataset_filelist(a) trainset = MelDataset(training_filelist, h.segment_size, h.n_fft, h.num_mels, h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, n_cache_reuse=0, shuffle=False if h.num_gpus > 1 else True, fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning, base_mels_path=a.input_mels_dir) train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False, sampler=train_sampler, batch_size=h.batch_size, pin_memory=True, drop_last=True) if rank == 0: validset = MelDataset(validation_filelist, h.segment_size, h.n_fft, h.num_mels, h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0, fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning, base_mels_path=a.input_mels_dir) validation_loader = DataLoader(validset, num_workers=1, shuffle=False, sampler=None, batch_size=1, pin_memory=True, drop_last=True) sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs')) generator.train() mpd.train() msd.train() for epoch in range(max(0, last_epoch), a.training_epochs): if rank == 0: start = time.time() print("Epoch: {}".format(epoch + 1)) if h.num_gpus > 1: train_sampler.set_epoch(epoch) for i, batch in enumerate(train_loader): if rank == 0: start_b = time.time() x, y, _, y_mel = batch x = torch.autograd.Variable(x.to(device, non_blocking=True)) y = torch.autograd.Variable(y.to(device, non_blocking=True)) y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True)) y = y.unsqueeze(1) y_g_hat = generator(x) y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax_for_loss) optim_d.zero_grad() # MPD y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach()) loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss( y_df_hat_r, y_df_hat_g) # MSD y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach()) loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss( y_ds_hat_r, y_ds_hat_g) loss_disc_all = loss_disc_s + loss_disc_f loss_disc_all.backward() optim_d.step() # Generator optim_g.zero_grad() # L1 Mel-Spectrogram Loss loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45 y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat) y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat) loss_fm_f = feature_loss(fmap_f_r, fmap_f_g) loss_fm_s = feature_loss(fmap_s_r, fmap_s_g) loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g) loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g) loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel loss_gen_all.backward() optim_g.step() if rank == 0: # STDOUT logging if steps % a.stdout_interval == 0: with torch.no_grad(): mel_error = F.l1_loss(y_mel, y_g_hat_mel).item() print( 'Steps : {:d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}' .format(steps, loss_gen_all, mel_error, time.time() - start_b)) # checkpointing if steps % a.checkpoint_interval == 0 and steps != 0: checkpoint_path = "{}/g_{:08d}".format( a.checkpoint_path, steps) save_checkpoint( checkpoint_path, { 'generator': (generator.module if h.num_gpus > 1 else generator).state_dict() }) checkpoint_path = "{}/do_{:08d}".format( a.checkpoint_path, steps) save_checkpoint( checkpoint_path, { 'mpd': (mpd.module if h.num_gpus > 1 else mpd).state_dict(), 'msd': (msd.module if h.num_gpus > 1 else msd).state_dict(), 'optim_g': optim_g.state_dict(), 'optim_d': optim_d.state_dict(), 'steps': steps, 'epoch': epoch }) # Tensorboard summary logging if steps % a.summary_interval == 0: sw.add_scalar("training/gen_loss_total", loss_gen_all, steps) sw.add_scalar("training/mel_spec_error", mel_error, steps) # Validation if steps % a.validation_interval == 0: # and steps != 0: generator.eval() torch.cuda.empty_cache() val_err_tot = 0 with torch.no_grad(): for j, batch in enumerate(validation_loader): x, y, _, y_mel = batch y_g_hat = generator(x.to(device)) y_mel = torch.autograd.Variable( y_mel.to(device, non_blocking=True)) y_g_hat_mel = mel_spectrogram( y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax_for_loss) val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item() if j <= 4: if steps == 0: sw.add_audio('gt/y_{}'.format(j), y[0], steps, h.sampling_rate) sw.add_figure('gt/y_spec_{}'.format(j), plot_spectrogram(x[0]), steps) sw.add_audio('generated/y_hat_{}'.format(j), y_g_hat[0], steps, h.sampling_rate) y_hat_spec = mel_spectrogram( y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax) sw.add_figure( 'generated/y_hat_spec_{}'.format(j), plot_spectrogram( y_hat_spec.squeeze(0).cpu().numpy()), steps) val_err = val_err_tot / (j + 1) sw.add_scalar("validation/mel_spec_error", val_err, steps) generator.train() steps += 1 scheduler_g.step() scheduler_d.step() if rank == 0: print('Time taken for epoch {} is {} sec\n'.format( epoch + 1, int(time.time() - start)))
def train(rank, a, h, resume_run_id=None): if h.num_gpus > 1: init_process_group( backend=h.dist_config["dist_backend"], init_method=h.dist_config["dist_url"], world_size=h.dist_config["world_size"] * h.num_gpus, rank=rank, ) torch.cuda.manual_seed(h.seed) device = torch.device("cuda:{:d}".format(rank)) generator = Generator(h).to(device) mpd = MultiPeriodDiscriminator().to(device) msd = MultiScaleDiscriminator().to(device) if rank == 0: print(generator) os.makedirs(a.checkpoint_path, exist_ok=True) print("checkpoints directory : ", a.checkpoint_path) cp_g = None cp_do = None if resume_run_id: restored_g = wandb.restore("g_latest") cp_g = restored_g.name restored_do = wandb.restore("do_latest") cp_do = restored_do.name steps = 0 if cp_g is None or cp_do is None: state_dict_do = None last_epoch = -1 else: state_dict_g = load_checkpoint(cp_g, device) state_dict_do = load_checkpoint(cp_do, device) generator.load_state_dict(state_dict_g["generator"]) mpd.load_state_dict(state_dict_do["mpd"]) msd.load_state_dict(state_dict_do["msd"]) steps = state_dict_do["steps"] + 1 last_epoch = state_dict_do["epoch"] if h.num_gpus > 1: generator = DistributedDataParallel(generator, device_ids=[rank]).to(device) mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device) msd = DistributedDataParallel(msd, device_ids=[rank]).to(device) optim_g = torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2]) optim_d = torch.optim.AdamW( itertools.chain(msd.parameters(), mpd.parameters()), h.learning_rate, betas=[h.adam_b1, h.adam_b2], ) if state_dict_do is not None: optim_g.load_state_dict(state_dict_do["optim_g"]) optim_d.load_state_dict(state_dict_do["optim_d"]) scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch) scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch) training_filelist, validation_filelist = get_dataset_filelist(a) trainset = MelDataset( training_filelist, h.segment_size, h.n_fft, h.num_mels, h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, n_cache_reuse=0, shuffle=False if h.num_gpus > 1 else True, fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning, base_mels_path=a.input_mels_dir, ) print(f"train dataset size:{len(trainset)}") train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None train_loader = DataLoader( trainset, num_workers=h.num_workers, shuffle=False, sampler=train_sampler, batch_size=h.batch_size, pin_memory=True, drop_last=True, ) if rank == 0: validset = MelDataset( validation_filelist, h.segment_size, h.n_fft, h.num_mels, h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0, fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning, base_mels_path=a.input_mels_dir, ) print(f"valid dataset size:{len(validset)}") validation_loader = DataLoader( validset, num_workers=1, shuffle=False, sampler=None, batch_size=1, pin_memory=True, drop_last=True, ) sw = SummaryWriter(os.path.join(a.checkpoint_path, "logs")) generator.train() mpd.train() msd.train() for epoch in range(max(0, last_epoch), a.training_epochs): if rank == 0: start = time.time() print("Epoch: {}".format(epoch + 1)) if h.num_gpus > 1: train_sampler.set_epoch(epoch) for i, batch in enumerate(train_loader): if rank == 0: start_b = time.time() x, y, _, y_mel = batch x = torch.autograd.Variable(x.to(device, non_blocking=True)) y = torch.autograd.Variable(y.to(device, non_blocking=True)) y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True)) y = y.unsqueeze(1) y_g_hat = generator(x) y_g_hat_mel = mel_spectrogram( y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax_for_loss, ) optim_d.zero_grad() # MPD y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach()) loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss( y_df_hat_r, y_df_hat_g) # MSD y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach()) loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss( y_ds_hat_r, y_ds_hat_g) loss_disc_all = loss_disc_s + loss_disc_f loss_disc_all.backward() optim_d.step() # Generator optim_g.zero_grad() # L1 Mel-Spectrogram Loss loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45 y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat) y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat) loss_fm_f = feature_loss(fmap_f_r, fmap_f_g) loss_fm_s = feature_loss(fmap_s_r, fmap_s_g) loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g) loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g) loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel loss_gen_all.backward() optim_g.step() if rank == 0: # STDOUT logging if steps % a.stdout_interval == 0: with torch.no_grad(): mel_error = F.l1_loss(y_mel, y_g_hat_mel).item() print( "Steps : {:d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}" .format(steps, loss_gen_all, mel_error, time.time() - start_b)) wandb.log( { "loss/Gen Loss Total": loss_gen_all, "loss/Mel-Spec. Error": mel_error, }, step=steps, ) # checkpointing if steps % a.checkpoint_interval == 0 and steps != 0: # generator checkpoint_path = "{}/g_{:08d}".format( a.checkpoint_path, steps) save_checkpoint( checkpoint_path, { "generator": (generator.module if h.num_gpus > 1 else generator).state_dict() }, ) checkpoint_name = "g_{:08d}".format(steps) wandb.save(checkpoint_name) # also save as latest checkpoint_path = "{}/g_latest".format(a.checkpoint_path) save_checkpoint( checkpoint_path, { "generator": (generator.module if h.num_gpus > 1 else generator).state_dict() }, ) wandb.save("g_latest") # discriminator checkpoint_path = "{}/do_{:08d}".format( a.checkpoint_path, steps) save_checkpoint( checkpoint_path, { "mpd": (mpd.module if h.num_gpus > 1 else mpd).state_dict(), "msd": (msd.module if h.num_gpus > 1 else msd).state_dict(), "optim_g": optim_g.state_dict(), "optim_d": optim_d.state_dict(), "steps": steps, "epoch": epoch, }, ) checkpoint_name = "do_{:08d}".format(steps) wandb.save(checkpoint_name) # also save as latest checkpoint_path = "{}/do_latest".format(a.checkpoint_path) save_checkpoint( checkpoint_path, { "mpd": (mpd.module if h.num_gpus > 1 else mpd).state_dict(), "msd": (msd.module if h.num_gpus > 1 else msd).state_dict(), "optim_g": optim_g.state_dict(), "optim_d": optim_d.state_dict(), "steps": steps, "epoch": epoch, }, ) wandb.save("do_latest") # Tensorboard summary logging if steps % a.summary_interval == 0: sw.add_scalar("training/gen_loss_total", loss_gen_all, steps) sw.add_scalar("training/mel_spec_error", mel_error, steps) # Validation if steps % a.validation_interval == 0: # and steps != 0: generator.eval() torch.cuda.empty_cache() val_err_tot = 0 with torch.no_grad(): samples_orig = [] samples_pred = [] for j, batch in enumerate(validation_loader): x, y, _, y_mel = batch y_g_hat = generator(x.to(device)) y_mel = torch.autograd.Variable( y_mel.to(device, non_blocking=True)) y_g_hat_mel = mel_spectrogram( y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax_for_loss, ) val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item() if j <= 4: if steps == 0: sw.add_audio( "gt/y_{}".format(j), y[0], steps, h.sampling_rate, ) sw.add_figure( "gt/y_spec_{}".format(j), plot_spectrogram(x[0]), steps, ) # log orig audio to wandb orig_audio = y.squeeze().cpu() samples_orig.append( wandb.Audio( orig_audio, caption=f"sample {i}", sample_rate=h.sampling_rate, )) sw.add_audio( "generated/y_hat_{}".format(j), y_g_hat[0], steps, h.sampling_rate, ) y_hat_spec = mel_spectrogram( y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax, ) sw.add_figure( "generated/y_hat_spec_{}".format(j), plot_spectrogram( y_hat_spec.squeeze(0).cpu().numpy()), steps, ) # log pred audio to wandb pred_audio = y_g_hat.squeeze().cpu() samples_pred.append( wandb.Audio( pred_audio, caption=f"sample {i}", sample_rate=h.sampling_rate, )) val_err = val_err_tot / (j + 1) sw.add_scalar("validation/mel_spec_error", val_err, steps) # log audios to wandb wandb.log( { "audio/generated": samples_pred, }, step=steps, ) if steps == 0: wandb.log( { "audio/original": samples_orig, }, step=steps, ) generator.train() steps += 1 scheduler_g.step() scheduler_d.step() if rank == 0: print("Time taken for epoch {} is {} sec\n".format( epoch + 1, int(time.time() - start)))